Engineered mesenchymal stem cells: A novel approach for Th2-targeted modulation in allergic asthma

Main Article Content

Mahdi Tabasheri
Amir Mahdi Mahdavi
Forough Parhizkar
Seyyed Shamsadin Athari

Keywords

asthma, engineering of MSC, mesenchymal stem cells, secretome, T-helper2

Abstract


Asthma is a widespread allergic condition that has impacted around 300 million people globally. There are various classifications of asthma, one of which is based on T-helper2 (Th2) cells, and in this review, we have focused on Th2 high type and how it is caused. In the following sections, we have explored various treatment approaches for asthma, with a particular emphasis on mesenchymal stem cells (MSCs) as a more effective alternative to conventional treatments. MSCs contribute to asthma management through multiple mechanisms, including the secretion of secretomes, soluble factors, and even interactions with other cells, such as dendritic cells and macrophages. However, as explained later in this review, there are challenges associated with MSCs. In response to these limitations, the development of engineered MSCs offers a novel approach. These engineered MSCs are tailored to improve therapeutic efficacy by boosting their homing efficiency, survival rates, and capacity to modulate immune responses. Engineered MSCs are designed with a variety of genes, each enabling distinct mechanisms that contribute to the effective control of asthma. By specifically targeting Th2 cells, these genetically modified MSCs can modulate immune responses, reduce inflammation, and improve airway function, offering a promising therapeutic strategy for management of asthma.


Abstract 299 | PDF Downloads 180 HTML Downloads 0 XML Downloads 14

References

1 Zhang Y, Lan F, and ZL. Update on pathomechanisms and treatments in allergic rhinitis. Allergy, 2022;77(11):3309–19. 10.1111/all.15454

2 Shah SA, Kobayashi M. Pathogenesis of chronic rhinosinusitis with nasal polyp and a prominent T2 endotype. Heliyon. 2023;9(9):e19249. 10.1016/j.heliyon.2023.e19249

3 Wu Z, Nasab EM, Arora P, Athari SS. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J Transl Med. 2022;20:130. 10.1186/s12967-022-03337-3

4 Choi JY et al. Effects of human adipose tissue-and bone marrow-derived mesenchymal stem cells on airway inflammation and remodeling in a murine model of chronic asthma. Sci Rep. 2022;12(1):12032. 10.1038/s41598-022-16165-8

5 Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approach. Nat Med. 2012;18:716–25. 10.1038/nm.2678

6 Ma B, Athari SS, Nasab EH, Zhao L. PI3K/AKT/mTOR and TLR4/MyD88/NF-κB signaling inhibitors attenuate pathological mechanisms of allergic asthma. Inflammation. 2021;44(5):1895–907. 10.1007/s10753-021-01466-3

7 Kuruvilla ME, Lee FE-H, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219–33. 10.1007/s12016-018-8712-1

8 Ying S, Humbert M, Barkans J, Corrigan CJ, Pfister R, Menz G, et al. Expression of IL-4 and IL-5 mRNA and protein product by CD4þ and CD8þ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. J Immunol. 1997;158:3539–44. 10.4049/jimmunol.158.7.3539

9 Bradding P, Roberts JA, Britten KM, Montefort S, Djukanovic R, Mueller R, et al. Interleukin-4,-5, and-6 and tumor necrosis factor-alpha in normal and asthmatic airways: Evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol. 1994;10:471–80. 10.1165/ajrcmb.10.5.8179909

10 Du Q, Meng W, Athari SS, Wang R. The effect of Co-Q10 on allergic rhinitis and allergic asthma. Allergy Asthma Clin Immunol. 2021;17:32. 10.1186/s13223-021-00534-5

11 Yin J, Yan F, Zheng R, Wu X, Athari SS. Immunomodulatory effect of IL-2-induced bone marrow mononuclear cell therapy on control of allergic asthma. Allergol Immunopathol (Madr). 2023;51(1):110–5. 10.15586/aei.v51i1.746

12 Nasaba EM, Atharib SM, Ghafarzadec S, Nasabd A-RM, Athari SS. Immunomodulatory effects of two silymarin isomers ina Balb/c mouse model of allergic asthma. Allergol Immunopathol (Madr). 2020;48(6):646–53. 10.1016/j.aller.2020.01.003

13 Pei W, Zhang Y, Zhu X, Zhao C, Li X, Lü H, et al. Multitargeted Immunomodulatory Therapy for Viral Myocarditis by Engineered Extracellular Vesicles. ACS Nano, 2024; 18(4):2782-2799. 10.1021/acsnano.3c05847

14 Hou C et al. Effect of transduced mesenchymal stem cells with IL-10 gene on control of allergic asthma. Allergol Immunopathol (Madr). 2023;51(2):45–51. 10.15586/aei.v51i2.789

15 Jacobsen EA et al. Eosinophils and asthma. Curr Allergy Asthma Rep. 2007;7:18–26. 10.1007/s11882-007-0026-y

16 Athari SS, Athari SM, Beyzay F, Movassaghi M, Mortaz E, Taghavi M. Critical role of toll-like receptors in pathophysiology of allergic asthma. Eur J Pharmacol. 2017;808:21–7. 10.1016/j.ejphar.2016.11.047

17 Grogan JL, Mohrs M. Harmon B, Lacy DA, Sedat JW, Locksley RM. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity. 2001;14(3):205–15. 10.1016/S1074-7613(01)00103-0

18 Spilianakis CG, Flavell RA. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol. 2004;5:1017–27. 10.1038/ni1115

19 Qian L, Nasab EM, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med. 2022;70(4):863–82. 10.1136/jim-2021-002098

20 Tao X, Wang J, Yan Y, Cheng P, Liu B, Du H and Niu B. Optimal Sca-1-based procedure for purifying mouse adipose-derived mesenchymal stem cells with enhanced proliferative and differentiation potential. Front. Cell Dev. Biol. 2025; 13:1566670. 10.3389/fcell.2025.1566670

21 Barnes PJ. Th2 cytokines and asthma: An introduction. Respir Res. 2001;2:64. 10.1186/rr39

22 Fujita H, Soyka MB, Akdis M et al. Mechanisms of allergen-specific immunotherapy. Clin Transl Allergy. 2012;2:1–8. 10.1186/2045-7022-2-2

23 Taku Kouro KT. IL-5-and eosinophil-mediated inflammation: From discovery to therapy. Int Immunol. 2009;21(12):1303–9. 10.1093/intimm/dxp102

24 Esmaeilzadeh A, Tahmasebi S, Athari SS. Chimeric antigen receptor-T cell therapy: Applications and challenges in treatment of allergy and asthma. Biomed Pharmacother. 2020;123:109685. 10.1016/j.biopha.2019.109685

25 Hulst GV, Christophe FB, Desmet J. Eosinophils as drivers of severe eosinophilic asthma: Endotypes or plasticity? Int J Mol Sci. 2021;22:10150. 10.3390/ijms221810150

26 Hajimohammadi B, Athari SM, Abdollahi M, Vahedi G, Athari SS. Oral administration of acrylamide worsens the inflammatory responses in the airways of asthmatic mice through agitation of oxidative stress in the lungs. Front Immunol. 2020;11:1940. 10.3389/fimmu.2020.01940

27 Wang H, Li B, Sun Y, Ma Q, Feng Y, Jia Y, et al. NIR-II AIE Luminogen-Based Erythrocyte-Like Nanoparticles with Granuloma-Targeting and Self-Oxygenation Characteristics for Combined Phototherapy of Tuberculosis. Advanced Materials, 2024; 36(38):2406143. 10.1002/adma.202406143

28 Bradding P, Andréanne Côté CP, Dahlén S-E, Hallstrand TS, Brightling CE. Airway hyperresponsiveness in asthma: The role of the epithelium. J Allergy Clin Immunol. 2024;153(5):1181–93. 10.1016/j.jaci.2024.02.011

29 Athari SS. Targeting cell signaling in allergic asthma. Signal Transd Target Ther. 2019;4:45. 10.1038/s41392-019-0079-0

30 Athari SS, Athari SM. The importance of eosinophil, platelet and dendritic cell in asthma. Asian Pac J Trop Dis. 2014;4(1):41–7. 10.1016/S2222-1808(14)60413-8

31 Athari SS, Pourpak Z, Folkerts G, Garssen J, Moin M, Adcock IM, Movassaghi M, Ardestani MS, Moazzeni SM, Mortaz E. Conjugated alpha-alumina nanoparticle with vasoactive intestinal peptide as a nano-drug in treatment of allergic asthma in mice. Eur J Pharmacol. 2016;791:811–20. 10.1016/j.ejphar.2016.10.014

32 Tang L, Chen Y, Xiang Q, Xiang J, Tang Y, et al. The association between IL18, FOXP3 and IL13 genes polymorphisms and risk of allergic rhinitis: a meta-analysis. Inflammation Research, 2020; 69(9):911-923. 10.1007/s00011-020-01368-4

33 Shen Q, Chen J, Yang S, Zhang H, Yu H, Wang S, et al. Protection against cigarette smoke-induced chronic obstructive pulmonary disease via activation of the SIRT1/FoxO1 axis by targeting microRNA-132. American journal of translational research, 2024; 16(10):5516–5524. 10.62347/FVQP4019

34 Zhuang H, Chen Q, Wang W, Qu Q, Xu W, Hu Q, et al. The efficacy of polymyxin B in treating stroke-associated pneumonia with carbapenem-resistant Gram-negative bacteria infections: a multicenter real-world study using propensity score matching. Frontiers in Pharmacology, 2025; 16:1413563. 10.3389/fphar.2025.1413563

35 Trzil JE. Feline asthma: Diagnostic and treatment update. Vet Clin North Am Small Anim Pract. 2020;50(2):375–91. 10.1016/j.cvsm.2019.10.002

36 Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–506. 10.1182/blood-2007-02-069716

37 Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4(1):3–11. 10.1007/s12015-008-9010-8

38 Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res. 2006;312(12):2169–79. 10.1016/j.yexcr.2006.03.019

39 Charbord P. Bone marrow mesenchymal stem cells: Historical overview and concepts. Hum Gene Ther. 2010;21(9):1045–56. 10.1089/hum.2010.115

40 Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;10:1191. 10.3389/fimmu.2019.01191

41 Bao XH et al. Immunomodulatory effect of IL-35 gene-transfected mesenchymal stem cells on allergic asthma. Fundam Clin Pharmacol. 2023;37(1):116–24. 10.1111/fcp.12823

42 Gao F et al. Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death Dis. 2016;7(1):e2062. 10.1038/cddis.2015.327

43 Marofi F, Vahedi G, Biglari A, Esmaeilzadeh A, Athari SS. Mesenchymal stromal/stem cells: A new era in the cell-based targeted gene therapy of cancer. Front Immunol. 2017;8:1770. 10.3389/fimmu.2017.01770

44 Pittenger MF et al. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen Med. 2019;4:22. 10.1038/s41536-019-0083-6

45 Kim HS et al. Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: Phase I/IIa studies. Stem Cells. 2017;35(1):248–55. 10.1002/stem.2401

46 Pei M. Environmental preconditioning rejuvenates adult stem cells’ proliferation and chondrogenic potential. Biomaterials. 2017;117:10–23. 10.1016/j.biomaterials.2016.11.049

47 Hong GH et al. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Exp Mol Med. 2017;49(1):e288. 10.1038/emm.2016.135

48 Sun YQ et al. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice. Stem Cells. 2012;30(12):2692–9. 10.1002/stem.1241

49 Castro LL et al. Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Transl Med. 2020;9(2):250–60. 10.1002/sctm.19-0120

50 Goodwin M et al. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells. 2011;29(7):1137–48. 10.1002/stem.656

51 Ahmad T et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. Embo J. 2014;33(9):994–1010. 10.1002/embj.201386030

52 Zhang W et al. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases. Front Immunol. 2023;14:1238789. 10.3389/fimmu.2023.1238789

53 Kim SH et al. Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases. BMB Rep. 2018;51(11):545–6. 10.5483/BMBRep.2018.51.11.255

54 Takeda K et al. Mesenchymal stem cells recruit CCR2(+) monocytes to suppress allergic airway inflammation. J Immunol. 2018;200(4):1261–9. 10.4049/jimmunol.1700562

55 Yadav UC et al. Aldose reductase inhibition prevents metaplasia of airway epithelial cells. PLoS One. 2010;5(12):e14440. 10.1371/journal.pone.0014440

56 Kuperman DA et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8(8):885–9. 10.1038/nm734

57 Habibian R, Delirezh N, Farshid AA. The effects of bone marrow-derived mesenchymal stem cells on ovalbumin-induced allergic asthma and cytokine responses in mice. Iran J Basic Med Sci. 2018;21(5):483–8. 10.22038/IJBMS.2018.26898.6575

58 Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56. 10.1038/ni.3049

59 Lankarani KB, Honarvar B, Athari SS. The mechanisms underlying helicobacter pylori-mediated protection against allergic asthma. Tanaffos. 2017;16(4):251–9.

60 Nemeth K et al. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA. 2010;107(12):5652–7. 10.1073/pnas.0910720107

61 Kang SY et al. Immunologic regulatory effects of human umbilical cord blood-derived mesenchymal stem cells in a murine ovalbumin asthma model. Clin Exp Allergy. 2017;47(7):937–45. 10.1111/cea.12920

62 Abreu SC et al. Bone marrow, adipose, and lung tissue-derived murine mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma. Stem Cells Transl Med. 2017;6(6):1557–67. 10.1002/sctm.16-0398

63 Mo Y et al. Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects. Sci Rep. 2022;12(1):11728. 10.1038/s41598-022-14846-y

64 English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett. 2008;115(1):50–8. 10.1016/j.imlet.2007.10.002

65 Selmani Z et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212–22. 10.1634/stemcells.2007-0554

66 Zhang J et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinform (GPB). 2015;13(1):17–24. 10.1016/j.gpb.2015.02.001

67 Mathivanan S, Ji H, Simpson RJ, Exosomes: extracellular organelles important in intercellular communication. J Proteom. 2010;73(10):1907–20. 10.1016/j.jprot.2010.06.006

68 Masoume Athari S, Mehrabi Nasab E, Shamsadin Athari S. Study effect of Ocimum basilicum seeds on mucus production and cytokine gene expression in allergic asthma mice model. Rev Fr d’Allergol. 2018;58(7):489–93. 10.1016/j.reval.2018.08.003

69 Liang ZZ et al. circRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int. 2020;20:173. 10.1186/s12935-020-01245-4

70 Yuan Y et al. Mesenchymal stem cell-derived exosomal miRNA-222-3p increases Th1/Th2 ratio and promotes apoptosis of acute myeloid leukemia cells. Anal Cell Pathol (Amst). 2023;2023:4024887. 10.1155/2023/4024887

71 Le Y et al. Adipogenic mesenchymal stromal cells from bone marrow and their hematopoietic supportive role: Towards understanding the permissive marrow microenvironment in acute myeloid leukemia. Stem Cell Rev Rep. 2016;12(2): 235–44. 10.1007/s12015-015-9639-z

72 Diaz de la Guardia R et al. Detailed characterization of mesenchymal stem/stromal cells from a large cohort of AML patients demonstrates a definitive link to treatment outcomes. Stem Cell Rep. 2017;8(6):1573–86. 10.1016/j.stemcr.2017.04.019

73 Taniguchi T et al. IRF family of transcription factors as regulators of host defense. Ann Rev Immunol. 2001;19:623–55. 10.1146/annurev.immunol.19.1.623

74 Kavanagh H, Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy. 2011;66(4):523–31. 10.1111/j.1398-9995.2010.02509.x

75 Patel SA et al. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta. J Immunol. 2010;184(10):5885–94. 10.4049/jimmunol.0903143

76 Hata AN, Breyer RM. Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation. Pharmacol Ther. 2004;103(2):147–66. 10.1016/j.pharmthera.2004.06.003

77 Németh K et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their Interleukin-10 production. Nat Med. 2009;15(1):42–9. 10.1038/nm.1905

78 Kubo S et al. E-prostanoid (EP)2/EP4 receptor-dependent maturation of human monocyte-derived dendritic cells and induction of helper T2 polarization. J Pharmacol Exp Ther. 2004;309(3):1213–20. 10.1124/jpet.103.062646

79 DelaRosa O et al. Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng A. 2009;15(10):2795–806. 10.1089/ten.tea.2008.0630

80 François M et al. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20(1):187–95. 10.1038/mt.2011.189

81 Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol. 2004;172(7):4100–10. 10.4049/jimmunol.172.7.4100

82 Frumento G et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68. 10.1084/jem.20020121

83 Munn DH et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22(5):633–42. 10.1016/j.immuni.2005.03.013

84 Fallarino F et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006;176(11):6752–61. 10.4049/jimmunol.176.11.6752

85 Peng YQ et al. Mesenchymal stromal cells-derived small extracellular vesicles modulate DC function to suppress Th2 responses via IL-10 in patients with allergic rhinitis. Eur J Immunol. 2022;52(7):1129–40. 10.1002/eji.202149497

86 Guilliams M et al. Establishment and maintenance of the macrophage niche. Immunity. 2020;52(3):434–51. 10.1016/j.immuni.2020.02.015

87 Muraille E, Leo O. Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol. 2014;5:603. 10.3389/fimmu.2014.00603

88 Bosco MC. Macrophage polarization: Reaching across the aisle? J Allergy Clin Immunol. 2019;143(4):1348–50. 10.1016/j.jaci.2018.12.995

89 Li Y et al. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol. 2019;16(12):908–20. 10.1038/s41423-019-0204-6

90 Wang X et al. BM-MSCs protect against liver ischemia/reperfusion injury via HO-1 mediated autophagy. Mol Med Rep. 2018;18(2):2253–62. 10.3892/mmr.2018.9207

91 Shin JW et al. Mesenchymal stem cells suppress severe asthma by directly regulating Th2 cells and type 2 innate lymphoid cells. Mol Cells. 2021;44(8):580–90. 10.14348/molcells.2021.0101

92 Braza F et al. Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells. 2016;34(7):1836–45. 10.1002/stem.2344

93 Sun Y-Q et al. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice. Stem Cells. 2012;30(12):2692–9. 10.1002/stem.1241

94 Dai R et al. Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model. BMC Pulm Med. 2018;18(1):131. 10.1186/s12890-018-0701-x

95 Kitoko JZ et al. Therapeutic administration of bone marrow-derived mesenchymal stromal cells reduces airway inflammation without up-regulating Tregs in experimental asthma. Clin Exp Allergy. 2018;48(2):205–16. 10.1111/cea.13048

96 de Castro LL et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res Ther. 2017;8(1):151. 10.1186/s13287-017-0600-8

97 Abreu SC et al. Serum from asthmatic mice potentiates the therapeutic effects of mesenchymal stromal cells in experimental allergic asthma. Stem Cells Transl Med. 2019;8(3):301–12. 10.1002/sctm.18-0056

98 Li D et al. Low levels of TGF-β1 enhance human umbilical cord-derived mesenchymal stem cell fibronectin production and extend survival time in a rat model of lipopolysaccharide-induced acute lung injury. Mol Med Rep. 2016;14(2):1681–92. 10.3892/mmr.2016.5416

99 Nie H et al. IL-1β pretreatment improves the efficacy of mesenchymal stem cells on acute liver failure by enhancing CXCR4 expression. Stem Cells Int. 2020;2020(1):1498315. 10.1155/2020/1498315

100 Moeinabadi-Bidgoli K et al. Genetic modification and preconditioning strategies to enhance functionality of mesenchymal stromal cells: a clinical perspective. Expert Opin Biol Ther. 2023;23(6):461–78. 10.1080/14712598.2023.2205017

101 Huang M, Nasab EM, Athari SS. Immunoregulatory effect of mesenchymal stem cell via mitochondria signaling pathways in allergic asthma. Saudi J Biol Sci. 2021;28(12):6957–62. 10.1016/j.sjbs.2021.07.071

102 Chen L et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3(4):e1886. 10.1371/journal.pone.0001886

103 Han Y et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92. 10.1038/s41392-022-00932-0

104 Levy O et al. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 2020;6(30):eaba6884. 10.1126/sciadv.aba6884

105 Liu L et al. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res. 2004;294(1):1–8. 10.1016/j.yexcr.2003.10.03110.1006/excr.1995.1056

106 Sachs PC et al. Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res. 2012;349(2):505–15. 10.1007/s00441-012-1423-7

107 Horie S et al. Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism. Intensive Care Med Exp. 2020;8(1):8. 10.1186/s40635-020-0295-5

108 Islam D et al. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury. Am J Resp Crit Care Med. 2019;199(10):1214–24. 10.1164/rccm.201802-0356OC

109 Bulati M et al. The immunomodulatory properties of the human amnion-derived mesenchymal stromal/stem cells are induced by INF-γ produced by activated lymphomonocytes and are mediated by cell-to-cell contact and soluble factors. Front Immunol. 2020;11:54. 10.3389/fimmu.2020.00054

110 Bao X-H, Gao F, Athari SS, Wang H. Immunomodulatory effect of IL-35 gene-transfected mesenchymal stem cells on allergic asthma. Fundam Clin Pharmacol. 2023;37(1):116–24. 10.1111/fcp.12823

111 Cunningham CJ, Redondo-Castro E, Allan SM. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J Cereb Blood Flow Metab. 2018;38(8):1276–92. 10.1177/0271678X18776802

112 Ferreira JR et al. Mesenchymal stromal cell secretome: Influencing therapeutic potential by cellular pre-conditioning. Front Immunol. 2018;9:2837. 10.3389/fimmu.2018.02837

113 Miceli V et al. Comparative study of the production of soluble factors in human placenta-derived mesenchymal stromal/stem cells grown in adherent conditions or as aggregates in a catheter-like device. Biochem Biophys Res Commun. 2020;522(1):171–6. 10.1016/j.bbrc.2019.11.069

114 Miceli V et al. Comparison of immunosuppressive and angiogenic properties of human amnion-derived mesenchymal stem cells between 2D and 3D culture systems. Stem Cells Int. 2019;2019:7486279. 10.1155/2019/7486279

115 Wang Y et al. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16. 10.1038/ni.3002

116 Jiang J, Nasab EM, Athari SM, Athari SS. Effects of vitamin E and selenium on allergic rhinitis and asthma pathophysiology. Resp Physiol Neurobiol. 2021;286:103614. 10.1016/j.resp.2020.103614

117 Müller L et al. Immunomodulatory properties of mesenchymal stromal cells: An update. Front Cell Dev Biol. 2021;9:637725. 10.3389/fcell.2021.637725

118 Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41(9):653–64. 10.1016/j.tips.2020.06.009

119 Li L et al. How to improve the survival of transplanted mesenchymal stem cell in ischemic heart ? Stem Cells Int. 2016;2016:9682757. 10.1155/2016/9682757

120 Song H et al. Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells. 2005;19(3):402–7. 10.1016/S1016-8478(23)13186-4

121 Tang YL et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol. 2005;46(7):1339–50. 10.1016/j.jacc.2005.05.079

122 Xu J et al. miR-210 over-expression enhances mesenchymal stem cell survival in an oxidative stress environment through antioxidation and c-Met pathway activation. Sci China Life Sci. 2014;57(10):989–97. 10.1007/s11427-014-4725-z

123 Jin XL, & Wang J. Down-Regulation of INSR Restores Th17/Treg Immune Balance and Alleviates Airway Hyperviscosity in Asthmatic Mice via Inactivation of STAT3 Pathway. Discovery Medicine, 2024; 36(181):372-384. 10.24976/Discov.Med.202436181.35

124 Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: Mechanisms and strategies for improvement. iScience. 2019;15:421–38. 10.1016/j.isci.2019.05.004

125 Mun JY et al. Minicircle microporation-based non-viral gene delivery improved the targeting of mesenchymal stem cells to an injury site. Biomaterials. 2016;101:310–20. 10.1016/j.biomaterials.2016.05.057

126 Levy O et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood. 2013;122(14):e23–32. 10.1182/blood-2013-04-495119

127 Xu T et al. Aryl hydrocarbon receptor protects lungs from cockroach allergen-induced inflammation by modulating mesenchymal stem cells. J Immunol. 2015;195(12):5539–50. 10.4049/jimmunol.1501198

128 Braza F et al. Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells. 2016;34(7):1836–45. 10.1002/stem.2344

129 De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells. 2016;8(3):73–87. 10.4252/wjsc.v8.i3.73

130 Hou C, Sun F, Liang Y, Nasab EM, Athari SS. Effect of transduced mesenchymal stem cells with IL-10 gene on control of allergic asthma. Allergol Immunopathol (Madr). 2023;51(2):45–51. 10.15586/aei.v51i2.789

131 Ghasemi F, Sarabi P, Athari SS, Esmaeilzadeh A. Therapeutics strategies against cancer stem cell in breast cancer. Int J Biochem Cell Biol. 2019;109:76–81. 10.1016/j.biocel.2019.01.015

132 Cheng Z et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther. 2008;16(3):571–9. 10.1038/sj.mt.6300374

133 Huang J et al. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res. 2010;106(11):1753–62. 10.1161/CIRCRESAHA.109.196030

134 Kumar S, Ponnazhagan S. Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. Faseb J. 2007;21(14):3917–27. 10.1096/fj.07-8275com

135 Tsuchiya H et al. Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2003;301(2):338–43. 10.1016/S0006-291X(02)03026-7

136 Alberton P et al. Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev. 2012;21(6):846–58. 10.1089/scd.2011.0150

137 Beegle JR et al. Preclinical evaluation of mesenchymal stem cells overexpressing VEGF to treat critical limb ischemia. Mol Ther Methods Clin Dev. 2016;3:16053. 10.1038/mtm.2016.53

138 Pollock K et al. Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol Ther. 2016;24(5):965–77. 10.1038/mt.2016.12

139 Choi JJ et al. Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin Exp Immunol. 2008;153(2):269–76. 10.1111/j.1365-2249.2008.03683.x

140 Nakajima M et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol Ther Methods Clin Dev. 2017;6:102–11. 10.1016/j.omtm.2017.06.005

141 Yu B et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol. 2015;182:349–60. 10.1016/j.ijcard.2014.12.043

142 Baglio SR et al. Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6(1):127. 10.1186/s13287-015-0116-z

143 Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release. 2012;161(2):377–88. 10.1016/j.jconrel.2012.04.008

144 Barkholt L et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies--bridging scientific observations and regulatory viewpoints. Cytotherapy. 2013;15(7):753–9. 10.1016/j.jcyt.2013.03.005

145 Wuchter P et al. Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy. 2015;17(2):128–39. 10.1016/j.jcyt.2014.04.002

146 Yin H. et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55. 10.1038/nrg3763

147 Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27. 10.4103/2277-9175.98152

148 Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: A review of nonviral methods and applications. J Biol Eng. 2019;13:7. 10.1186/s13036-019-0140-0

149 Petrakis S et al. Gateway-compatible transposon vector to genetically modify human embryonic kidney and adipose-derived stromal cells. Biotechnol J. 2012;7(7):891–7. 10.1002/biot.201100471

150 Park JS et al. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. 2015;84:3–16. 10.1016/j.ymeth.2015.03.002

151 Varkouhi AK et al. Genetically modified mesenchymal stromal/stem cells: Application in critical illness. Stem Cell Rev Rep. 2020;16(5):812–27. 10.1007/s12015-020-10000-1

152 Moore KW et al. Interleukin-10 and the interleukin-10 receptor. Ann Rev Immunol. 2001;19:683–765. 10.1146/annurev.immunol.19.1.683

153 Mehrabi Nasab E, Athari SM, Motlagh B, Athari SS. Effects of oral administration of Ocimum basilicum on goblet cell hyperplasia and upstream cytokine gene expression in allergic asthma. Rev Franç d’Allergol. 2020;60:64–8. 10.1016/j.reval.2019.02.226

154 McInnes IB et al. IL-10 improves skin disease and modulates endothelial activation and leukocyte effector function in patients with psoriatic arthritis. J Immunol, 2001;167(7):4075–82. 10.4049/jimmunol.167.7.4075

155 Trachsel E et al. Antibody-mediated delivery of IL-10 inhibits the progression of established collagen-induced arthritis. Arthritis Res Ther. 2007;9(1):R9. 10.1186/ar2115

156 Galeazzi M et al. A phase IB clinical trial with Dekavil (F8-IL10), an immunoregulatory ‘armed antibody’ for the treatment of rheumatoid arthritis, used in combination wiIh methotrexate. Isr Med Assoc J. 2014;16(10):666.

157 Kosaka S et al. IL-10 controls Th2-type cytokine production and eosinophil infiltration in a mouse model of allergic airway inflammation. Immunobiology. 2011;216(7):811–20. 10.1016/j.imbio.2010.12.003

158 Amari A et al. In vitro generation of IL-35-expressing human Wharton’s jelly-derived mesenchymal stem cells using lentiviral vector. Iran J Allergy Asthma Immunol. 2015;14(4):416–26.

159 Bardel E et al. Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J Immunol. 2008;181(10):6898–905. 10.4049/jimmunol.181.10.6898

160 Haribhai D et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. 2011;35(1):109–22. 10.1016/j.immuni.2011.03.029

161 Qiu YY et al. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3. Am J Transl Res. 2017;9(7):3184–99.

162 Wu TD, Brigham EP, McCormack MC. Asthma in the primary care setting. Med Clin North Am. 2019;103(3):435–52. 10.1016/j.mcna.2018.12.004

163 Tang H et al. Protective effect of miR-138-5p inhibition modified human mesenchymal stem cell on ovalbumin-induced allergic rhinitis and asthma syndrome. J Cell Mol Med. 2021;25(11):5038–49. 10.1111/jcmm.16473

164 Tian S et al. miR-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1. Oncotarget. 2017;8(7):11071–82. 10.18632/oncotarget.14360

165 Zhu J et al. Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis. Oncotarget. 2017;8(39):65253–64. 10.18632/oncotarget.18224

166 Wang B et al. MiR-138-5p promotes TNF-α-induced apoptosis in human intervertebral disc degeneration by targeting SIRT1 through PTEN/PI3K/Akt signaling. Exp Cell Res. 2016;345(2):199–205. 10.1016/j.yexcr.2016.05.011

167 Han XP et al. EPO modified MSCs can inhibit asthmatic airway remodeling in an animal model. J Cell Biochem. 2018;119(1):1008–16. 10.1002/jcb.26268

168 Wang W et al. Protective effects of recombinant human erythropoietin against pressure overload-induced left ventricular remodeling and premature death in mice. Tohoku J Exp Med. 2011;225(2):131–43. 10.1620/tjem.225.13110.1620/tjem.256.131

169 Strunk T et al. Erythropoietin inhibits cytokine production of neonatal and adult leukocytes. Acta Paed. 2008;97(1):16–20. 10.1111/j.1651-2227.2007.00560.x

170 Chung DJ et al. Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood. 2009;114(3):555–63. 10.1182/blood-2008-11-191197

171 Jürgens B et al. Interferon-gamma-triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells. Blood. 2009;114(15):3235–43. 10.1182/blood-2008-12-195073

172 Katz JBA, Muller J, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;222:206–21. 10.1111/j.1600-065X.2008.00610.x

173 He Y et al. Indoleamine 2,3-dioxgenase transfected mesenchymal stem cells induce kidney allograft tolerance by increasing the production and function of regulatory t cells. Transplantation. 2015;99(9):1829–38. 10.1097/TP.0000000000000856

174 Li J, Liang L, Lyu B, Cai YS, Zuo Y, Su J, et al. Double trouble: The interaction of PM2.5 and O3 on respiratory hospital admissions. Environmental Pollution, 2023; 338:122665. 10.1016/j.envpol.2023.122665

175 Martínez-González I et al. Human mesenchymal stem cells resolve airway inflammation, hyperreactivity, and histopathology in a mouse model of occupational asthma. Stem Cells Dev. 2014;23(19):2352–63. 10.1089/scd.2013.0616