Climate change and allergic diseases in children and adolescents
Main Article Content
Keywords
adolescents, air pollution, allergic disease, children, climate changes
Abstract
Introduction: The Anthropocene is used to describe the most recent period where major disruptions in Earth’s system processes have resulted from humanity’s increasing ecological footprint. Climate change affects the social and environmental determinants of good health, such as clean air, stable ecosystems, safe drinking water, and sufficient and safe food, and they seem to be closely related to air pollution.
Objectives: This article aims to review the evidence of how extreme weather events and indoor and outdoor pollution are associated with insufficient lung growth in early life, changes in lung function, and the increase in respiratory infections, favoring the development of allergic respiratory diseases.
Material and Methods: Non-systematic review of English, Spanish, and Portuguese articles published in the last ten years in databases such as PubMed, EMBASE, and SciELO. The terms used were air pollution OR climate changes OR smoke, AND health OR allergic disease.
Results: Climate change and air pollution are the leading contributors to health emergencies around the world. On a global scale, those most at risk of adverse health effects associated with climate change include children, the elderly, and other vulnerable groups. Climate change and air pollution have adverse impacts on respiratory allergies, and the mechanisms are complex and interactive.
Conclusion: Health professionals must receive information and education necessary to establish effective mitigation and adaptation strategies to minimize the effects of climate changes on the respiratory health of their patients.
References
2. Annesi-Maesano I, Maesano CN, Biagioni B, D’Amato G, Cecchi L. Call to action: Air pollution, asthma, and allergy in the exposome era. J Allergy Clin Immunol. 2021;148(1):70–72. 10.1016/j.jaci.2021.05.026
3. Pacheco SE. Catastrophic effects of climate change on children’s health start before birth. J Clin Invest. 2020;130(2):562–4. 10.1172/JCI135005
4. Rouadi PW, Idriss AS, Naclerio RM, Peden DB, Ansotegui IJ, Canonica HGW, et al. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organ J. 2020;13:100467. 10.1016/j.waojou.2020.100467
5. Deng Q, Lu C, Ou C, Chen L, Liu W. Effects of early life exposure to outdoor air pollution and indoor renovation on childhood asthma in China. Build Environ. 2015;93:84–91. 10.1016/j.buildenv.2015.01.019
6. Deng Q, Lu C, Norbäck D, Bornehag CG, Zhang Y, Liu W, et al. Early life exposure to ambient air pollution and childhood asthma in China. Environ Res. 2015;143(Pt A):83–92. 10.1016/j.envres.2015.09.032
7. Lu C, Deng L, Ou C, Yuan H, Chen X, Deng Q. Preconceptional and perinatal exposure to traffic-related air pollution and eczema in preschool children. J Dermatol Sci. 2017;85(2):85–95. 10.1016/j.jdermsci.2016.11.004
8. Deng Q, Lu C, Yu Y, Li Y, Sundell J, Norbäck D. Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respir Med. 2016;121:67–73. 10.1016/j.rmed.2016.10.016
9. Pawankar R, Wang JY, Wang IJ, Thien F, Chang YS, Latiff AH, et al. Asia pacific association of allergy asthma and clinical immunology white paper 2020 on climate change, air pollution, and biodiversity in Asia-Pacific and impact on allergic diseases. Asia Pac Allergy. 2020;10(1):e11. 10.5415/apallergy.2020.10.e11
10. Burbank AJ, Sood A, Kesic M, Peden D, Hernández M. Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol. 2017;140(1):1–12. 10.1016/j.jaci.2017.05.010
11. Cecchi L, D’Amato G, Annesi-Maesano I. Climate change and outdoor aeroallergens related to allergy and asthma: taking the exposome into account. Allergy. 2020;75:2361–3. 10.1111/all.14286
12. D’Amato G, Annesi-Maesano I, Vaghi A, Cecchi L, D’Amato M. How do storms affect asthma? Curr Allergy Asthma Rep. 2018;18:24 10.1007/s11882-018-0775-9
13. Deng Q, Lu C, Ou C, Chen L, Yuan H. Preconceptional, prenatal and postnatal exposure to outdoor and indoor environmental factors on allergic diseases/symptoms in preschool children. Chemosphere. 2016;152:459–67. 10.1016/j.chemosphere.2016.03.032
14. Knudsen TM, Rezwan FI, Jiang Y, Karmaus W, Svanes C, Holloway JW. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol. 2018;142(3):765–72. 10.1016/j.jaci.2018.07.007
15. Accordini S, Calciano L, Johannessen A, Portas L, Benediktsdóttir B, Bertelsen RJ, et al. A three-generation study on the association of tobacco smoking with asthma. Int J Epidemiol. 2018;47(4):1106–17. 10.1093/ije/dyy031
16. Johannessen A, Lønnebotn M, Calciano L, Benediktsdóttir B, Bertelsen RJ, Bråbäck L, et al. Being overweight in childhood, puberty, or early adulthood: Changing asthma risk in the next generation? J Allergy Clin Immunol. 2020;145(3):791–99. 10.1016/j.jaci.2019.08.030
17. Svanes C, Koplin J, Skulstad SM, Johannessen A, Bertelsen RJ, Benediktsdottir B, et al. Father’s environment before conception and asthma risk in his children: a multi-generation analysis of the respiratory health in Northern Europe study. Int J Epidemiol. 2017;46(1):235–45. 10.1093/ije/dyw151
18. Aguilera R, Corringham T, Gershunov A, Leibel S, Benmarhnia T. Fine particles in wildfire smoke and pediatric respiratory health in California. Pediatrics. 2021;147(4):e2020027128. 10.1542/peds.2020-027128
19. Ladd-Acosta C, Feinberg JI, Brown SC, Lurmann FW, Croen LA, Hertz-Picciotto I, et al. Epigenetic marks of prenatal air pollution exposure found in multiple tissues relevant for child health. Environ Int. 2019;126:363–76. 10.1016/j.envint.2019.02.028
20. Mukherjee N, Arathimos R, Chen S, Kheirkhah Rahimabad P, Han L, Zhang H, et al. DNA methylation at birth is associated with lung function development until age 26 years. Eur Resp J. 2021;57(4):2003505. 10.1183/13993003.03505-2020
21. Haahtela T, Holgate S, Pawankar R, Akdis CA, Benjaponpitak S, Caraballo L, et al. The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J. 2013;6:3. 10.1186/1939-4551-6-3
22. Haahtela T, Alenius H, Lehtimäki J, Sinkkonen A, Fyhrquist N, Hyöty H, et al. Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy. 2021;76:3631–26. 10.1111/all.14895
23. Han YY, Forno E, Badellino HA, Celedón JC. Antibiotic use in early life, rural residence, and allergic diseases in Argentinean children. J Allergy Clin Immunol Pract. 2017;5(4):1112–18. 10.1016/j.jaip.2016.12.025
24. Fiuza BSD, Fonseca HF, Meirelles PM, Marques CR, da Silva TM, Figueiredo CA. Understanding asthma and allergies by the lens of biodiversity and epigenetic changes. Front Immunol. 2021;12:623737. 10.3389/fimmu.2021.623737
25. Gao Y, Nanan R, Macia L, Tan J, Sominsky L, Quinn TP, et al. The maternal gut microbiome during pregnancy and offspring allergy and asthma. J Allergy Clin Immunol. 2021;148(3):669–78. 10.1016/j.jaci.2021.07.011
26. Fogelbach GD, Ramon GD, Staffeld PL, Sarabia AMC, López CASR, Duarte PA, et al. Atmospheric pollution in Latin America: impact on health and current regulation-report of the Aerobiology Committee of the Latin American Society of Asthma, Allergy and Immunology. Arq Asma Alerg Imunol. 2021;4(4):423–34. 10.5935/2526-5393.20200064
27. Anderegg WRL, Abatzoglou JT, Anderegg LDL, Bielory L, Kinney PL, Ziska L. Anthropogenic climate change is worsening North American pollen seasons. Proc Natl Acad Sci USA. 2021;118(7):e2013284118. 10.1073/pnas.2013284118
28. Katelaris CH, Beggs PJ. Climate change: allergens and allergic diseases. Intern Med J. 2018;48(2):129–34. 10.1111/imj.13699
29. Bartemes KR, Kita H. Innate and adaptive immune responses to fungi in the airway. J Allergy Clin Immunol. 2018;142(2):353–63. 10.1016/j.jaci.2018.06.015
30. Poole JA, Barnes CS, Demain JG, Bernstein JA, Padukudru MA, Sheehan WJ, et al. Impact of weather and climate change with indoor and outdoor air quality in asthma: a work group report of the AAAAI environmental exposure and respiratory health committee. J Allergy Clin Immunol. 2019;143(5):1702–10. 10.1016/j.jaci.2019.02.018
31. Robichaud A. An overview of selected emerging outdoor airborne pollutants and air quality issues: the need to reduce uncertainty about environmental and human impacts. J Air Waste Manag Assoc. 2020;70(4):341–78. 10.1080/10962247.2020.1723738
32. Pacheco SE, Guidos G, Annesi-Maesano I, Pawankar R, Amato G, Latour-Staffeld P, et al. Climate change and global issues in allergy and immunology. J Allergy Clin Immunol. 2021;148:1366–77. 10.1016/j.jaci.2021.10.011
33. Spann K, Snape N, Baturcam E, Fantino E. The impact of early-life exposure to air-borne environmental insults on the function of the airway epithelium in asthma. Ann Glob Health. 2016;82(1):28–40. 10.1016/j.aogh.2016.01.007
34. Amato MA, Cecchi L, Annesi-Maesano I, Amato GD. News on climate change, air pollution, and allergic triggers of asthma. J Investig Allergol Clin Immunol. 2018;28(2):91–7. 10.18176/jiaci.0228
35. Yang SI. Particulate matter and childhood allergic diseases. Korean J Pediatr. 2019;62(1):22–9. 10.3345/kjp.2018.07045
36. Ray C, Ming X. Climate change and human health: a review of allergies, autoimmunity and the microbiome. Int J Environ Res Public Health. 2020;17(13):4841. 10.3390/ijerph17134814
37. Ziska LH, Makra L, Harry SK, Bruffaerts N, Hendrickx M, Coates F, et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis. Lancet Planet Health. 2019;3(3):e124–31. 10.1016/S2542-5196(19)30015-4
38. Rossiello MR, Szema A. Health effects of climate change-induced wildfires and heatwaves. Cureus. 2019;11(5):e4771. 10.7759/cureus.4771
39. Glick S, Gehrig R, Eeftens M. Multi-decade changes in pollen season onset, duration, and intensity: a concern for public health? Sci Total Environ. 2021;781:146382. 10.1016/j.scitotenv.2021.146382
40. Kurganskiy A, Creer S, de Vere N, Griffith GW, Osborne NJ, Wheeler BW, et al. Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe. Sci Adv. 2021;7(13):eabd7658. 10.1126/sciadv.abd7658
41. Robichaud A. An overview of selected emerging outdoor airborne pollutants and air quality issues: the need to reduce uncertainty about environmental and human impacts. J Air Waste Manag Assoc. 2020;70(4):341–78. 10.1080/10962247.2020.1723738
42. D’Amato G, Holgate ST, Pawankar R, Ledford DK, Cecchi L, Al-Ahmad M, et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ J. 2015;8:25. 10.1186/s40413-015-0073-0
43. Fatma Al-Enezi,Schmidt CW. Pollen Overload: seasonal allergies in a changing climate. Environ Health Perspect. 2016;124(4):A70–5. 10.1289/ehp.124-A70
44. D’Amato G, Annesi-Maesano I, Urrutia-Pereira M, Giacco SD, Rosario Filho NA, Chong-Neto HJ, et al. Thunderstorm allergy and asthma: state of the art. Multidiscip Respir Med. 2021;16:806. 10.4081/mrm.2021.806
45. D’Amato G, Chong-Neto HJ, Monge Ortega OP, Vitale C, Ansotegui IJ, Rosario N, et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy. 2020;75:2219–28. 10.1111/all.14476
46. Pawankar R, Wang JY. Climate change, air pollution, and biodiversity in Asia Pacific and impact on respiratory allergies. Immunol Allergy Clin North Am. 2021;41(1): 63–71. 10.1016/j.iac.2020.09.008
47. Rosário Filho NA, Urrutia-Pereira M, D’Amato G, Cecchi L, Ansotegui IJ, Galan C, et al. Air pollution and indoor settings. World Allergy Organ J. 2021;14:100499. 10.1016/j.waojou.2020.100499
48. Senerat AM, Manemann SM, Clements NS, Brook RD, Hassett LC, Roger VL. Biomarkers and indoor air quality: a translational research review. J Clin Transl Sci. 2020;5(1):e39. 10.1017/cts.2020.532
49. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Available from: https://www.who.int/publications/i/item/9789240034228?ua=1 Accessed in October 2021.
50. Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, et al. The 2021 report of the lancet countdown on health and climate change: code red for a healthy. Lancet. 2021;398:10311,1619–62. 10.1016/S0140-6736(21)01787-6
51. Kolokotsa D, Santamouris M. Review of the indoor environmental quality and energy consumption studies for low income households in Europe. Sci Total Environ. 2015;536:316–30. 10.1016/j.scitotenv.2015.07.073
52. Bennitt FB, Wozniak SS, Causey K, Burkart K, Brauer M. Estimating disease burden attributable to household air pollution: new methods within the Global Burden of Disease Study. Lancet Glob. 2021;9:S18. 10.1016/S2214-109X(21)00126-1
53. Simkovich SM, Goodman D, Roa C, Crocker ME, Gianella GE, Kirenga BJ, et al. The health and social implications of household air pollution and respiratory diseases. NPJ Prim Care Respir Med. 2019;29(1):12. 10.1038/s41533-019-0126-x
54. Forouzanfar MH, Afshin A, Alexander LT, Anderson HB, Brutta ZA, Birykov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1659–1724. 10.1016/S0140-6736(16)31679-8
55. Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, et al. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2015;385(9963):117–71. 10.1016/S0140-6736(14)61682-2
56. Shupler M, Hystad P, Birch A, Miller-Lionberg D, Jeronimo M, Arku R, et al. Household and personal air pollution exposure measurements from 120 communities in eight countries: results from the PURE-AIR study. Lancet Planet Health. 2020;4(10):e451–e462. 10.1016/S2542-5196(20)30197-2
57. Kim K, Jahan SA, Kabir E. A review of diseases associated with household air pollution due to the use of biomass fuels. J Hazard Mater. 2011;192(2):425–31. 10.1016/j.jhazmat.2011.05.087
58. Salvi S, Barnes PJ. Is exposure to biomass smoke the biggest risk factor for COPD globally? Chest. 2010;138(1):3–6. 10.1378/chest.10-0645
59. Balmes JR. Household air pollution from domestic combustion of solid fuels and health. J Allergy Clin Immunol. 2019;143(6):1979–87. 10.1016/j.jaci.2019.04.016
60. Simkovich SM, Goodman D, Roa C, Crocker ME, Gianella GE, Kirenga BJ, et al. The health and social implications of householh air pollution and respiratory diseasses. NPJ Prim Care Respir Med. 2019;29(1):12. 10.1038/s41533-019-0126-x
61. Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Metha S, Prüss-Ustün A, et al. Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environ Health Perspect. 2013;121(7):784–90. 10.1289/ehp.1205987
62. Raju S, Siddharthan T, McCormack MC. Indoor air pollution and respiratory health. Clin Chest Med. 2020;41(4):825–43. 10.1016/j.ccm.2020.08.014
63. Goldemberg J, Martinez-Gomez J, Sagar A, Smith KR. Household air pollution, health, and climate change–clearing the air. Environ Res Lett. 2018;13:30201. 10.1088/1748-9326/aaa49d
64. Hansel NN, Breysse PN, McCormack MC, Matsui EC, Curtin-Brosnan J, Williams D, et al. A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ Health Perspect. 2008;116(10):1428–32. 10.1289/ehp.11349
65. Paulin LM, Scott M, Diette GB, Mc Cormack MC, Matsul E, Curtin-Brosnan J, et al. Home interventions are effective at decreasing indoor nitrogem dioxide concentrations. Indoor Air. 2014; 24(4):416–24. 10.1111/ina.12085
66. Lebel ED, Finnegan CJ, Ouyang Z, Jackson RB. Methane and NOX emissions from natural gas stoves, cooktops and ovens in residential homes. Environ Sci Technol. 2022; 56(4),2529–39. 10.1021/acs.est.1c04707
67. See SW, Balasubramanian R. Physical characteristics of ultrafine particles emitted from different gas cooking methods. Aerosol Air Qual Res. 2006;6:82–92. 10.4209/AAQR.2006.03.0007
68. Torkmahalleh MA, Goldasteh I, Zhao Y, Udochu NM, Rossner A, Hopke PK, et al. PM2.5 and ultrafine particles emitted during heating of Commercial cooking oils. Indoor Air. 2012;22(6):438–91. 10.1111/j.1600-0668.2012.00783.x
69. Rogula-Kopiec P, Rogula-Kozłowska W, Pastuszka JS, Mathews B. Air pollution of beauty salons by cosmetics from the analysis of suspended particulate matter. Environ Chem Lett. 2019;17:551–8. 10.1007/s10311-018-0798-4
70. Afshari A, Matson U, Ekberg LE. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air. 2005;15:141–50. 10.1111/j.1600-0668.2005.00332.x
71. Wallace L, Jeong S-G, Rim D. Dynamic behavior of indoor ultrafine particles (2.3-64 nm) due to burning candles in a residence. Indoor Air. 2019;29:1018–27. 10.1111/ina.12592
72. Zhang L, Jiang Z, Tong J, Wang Z, Han Z, Zhang J. Using charcoal as base material reduces mosquito coil emissions of toxins. Indoor Air. 2010;20:176–84. 10.1111/j.1600-0668.2009.00639.x
73. Amoatey P, Omidvarborna H, Baawain MS, Al-Mamun A. Impact of building ventilation systems and habitual indoor incense burning on SARS-CoV-2 virus transmissions in Middle Eastern countries. Sci Total Environ. 2020;733:139356. 10.1016/j.scitotenv.2020.139356
74. Sangion A, Li L. Evaluating consumer exposure to disinfecting chemicals against coronavirus disease 2019 (COVID-19) and associated health risks. Environ Int. 2020;145:106108. 10.1016/j.envint.2020.106108
75. Gong WJ, Fong DYT, Wang MP, Lam TH, Chung TWH, Ho SY. Increasing socioeconomic disparities in sedentary behaviors in Chinese children. BMC Public Health. 2019;19(1):754. 10.1186/s12889-019-7092-7
76. Yang L, Cao C, Kantor ED, Nguyen LH, Zheng X, Park Y, et al. Trends in sedentary behavior among the US population, 2001–2016. JAMA. 2019;321:1587–97. 10.1001/jama.2019.3636
77. Havey CD, Dane AJ, Abbas-Hawks C, Voorhees KJ. Detection of nitro-polycyclic aromatic hydrocarbons in mainstream and sidestream tobacco smoke using electron monochromatormass spectrometry. Environ Chem Lett. 2009;7:331–6. 10.1007/s10311-008-0174-x
78. Semple S, Apsley A, Ibrahim TA, Turner SW, Cherrie JW. Fine particulate matter concentrations in smoking households: just how much secondhand smoke do you breathe in if you live with a smoker who smokes indoors? Tob Control. 2015;24:e205–11. 10.1136/tobaccocontrol-2014-051635
79. Ferguson L, Taylor J, Davies M, Shrubsole C, Symonds P, Dimitroulopoulou S. Exposure to indoor air pollution across socio-economic groups in high-income countries: A scoping review of the literature and a modelling methodology. Environ Int. 2020;143:105748. 10.1016/j.envint.2020.105748
80. Arku RE, Adamkiewicz G, Vallarino J, Spengler JD, Levy DE. Seasonal variability in environmental tobacco smoke exposure in public housing developments. Indoor Air. 2015;25(1):13–20. 10.1111/ina.12121
81. Smith KR, Mehta S. The burden of disease from indoor air pollution in developing countries: comparison of estimates. Int J Hyg Environ Health. 2003;206(4–5):279–89. 10.1078/1438-4639-00224
82. Chuanwei Ma, Heiland EG, Li Z, Zhao M, Liang Y, Xi B, et al. Global trends in the prevalence of secondhand smoke exposure among adolescents aged 12–16 years from 1999 to 2018: an analysis of repeated cross-sectional surveys. Lancet Glob Health. 2021;9:e1667–78. 10.1016/S2214-109X(21)00365-X
83. Mescolo F, Ferrante G, La Grutta S. Effects of e-cigarette exposure on prenatal life and childhood respiratory health: a review of current evidence. Front Pediatr. 2021;9:711573. 10.3389/fped.2021.711573
84. Orzabal MR, Naik VD, Lee J, Wu G, Ramadoss J. Impact of gestational electronic cigarette vaping on amino acid signature profile in the pregnant mother and the fetus. Metabol Open. 2021;11:100107. 10.1016/j.metop.2021.100107
85. Collaco JM, Aoyama BC, Rice JL, McGrath-Morrow SA. Influences of environmental exposures on preterm lung disease. Expert Rev Respir Med. 2021;15(10):1271–79. 10.1080/17476348.2021.1941886
86. Son Y, Giovenco DP, Delnevo C, Khlystov A, Samburova V. Meng Q. Indoor air quality and passive e-cigarette aerosol exposures in vape-shops. Nicotine Tob Res. 2020;8;22(10):1772–79. 10.1093/ntr/ntaa094
87. Destaillats H, Singer B, Salthammer T. Does vaping affect indoor air quality? Indoor Air. 2020;30(5):793–94. 10.1111/ina.12663.
88. Schober W, Fembacher L, Frenzen A, Fromme H. Passive exposure to pollutants from conventional cigarettes and new electronic smoking devices (IQOS, e-cigarette) in passenger cars. Int J Hyg Environ Health. 2019;222(3):486–93. 10.1016/j.ijheh.2019.01.003
89. Hüls A, Vanker A, Gray D, Koen N, MacIsaac JL, Lin DTS, et al. Genetic susceptibility to asthma increases the vulnerability to indoor air pollution. Eur Respir J. 2020;55(3):1901831. 10.1183/13993003.01831-2019
90. Hasan M, Tasfina S, Haque SMR, Saif-Ur-Rahman KM, Khalequzzaman M, Bari W, et al. Association of biomass fuel smoke with respiratory symptoms among children under 5 years of age in urban areas: results from Bangladesh. Environ Health Prev Med. 2019;24(1):65. 10.1186/s12199-019-0827-3
91. Lee AG, Kaali S, Quinn A, Delimini R, Burkat K, Opuku-Mensah J et al. Prenatal household air pollution is associated with impaired infant lung function with sex-specific effects. evidence from graphs, a cluster randomized cookstove intervention trial. Am J Respir Crit Care Med. 2019;15:199(6):738–46. 10.1164/rccm.201804-0694OC
92. Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurni OP, Lan K, et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir Med. 2014;2(10):823–60. 10.1016/S2213-2600(14)70168-7
93. Household air pollution and health. Available from: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health Accessed in Aug 20, 2021.
94. The Lancet Planetary Health. Breathing fire. Lancet Planet Health. 2021;5(9):e570. 10.1016/S2542-5196(21)00236-9
95. Xue T, Geng G, Li J, Han Y, Guo O, Kelly FJ, et al. Associations between exposure to landscape fire smoke and child mortality in low-income and middle-income countries: a matched case-control study. Lancet Planet Health. 2021;5:e588–98. 10.1016/S2542-5196(21)00153-4
96. Borchers-Arriagada N, Bowman DMJS, Price O, Palmer A, Samson S, Clarke H, et al. Smoke health costs and the calculus for wildfires fuel management: a modelling study. Lancet Planet Health. 2021;5:e608–19. 10.1016/S2542-5196(21)00198-4
97. Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM, Bell ML, et al. Wildfires, global climate change, and human health. N Engl J Med. 2020;383(22):2173–81. 10.1056/NEJMsr2028985
98. Holm SM, Miller MD, Balmes JR. Health effects of wildfire smoke in children and public health tools: a narrative review. J Expo Sci Environ Epidemiol. 2021;31(1):1–20. 10.1038/s41370-020-00267-4.
99. Kumar R, Eftekhari P, Gould GS. Pregnant women who smoke may be at greater risk of adverse effects from bushfires. Int J Environ Res Public Health. 2021;18(12):6223. 10.3390/ijerph18126223
100. Alves L. Amazon fires coincide with increased respiratory illnesses in indigenous populations. Lancet Respir Med. 2020;8(11):e84. 10.1016/S2213-2600(20)30421-5
101. Murphy VE, Karmaus W, Mattes J, Brew BK, Collison A, Holliday E, et al. Exposure to stress and air pollution from bushfires during pregnancy: could epigenetic changes explain effects on the offspring? J Environ Res Public Health. 2021;18(14):7465. 10.3390/ijerph18147465
102. Chen G, Guo Y, Yue X, Tong S, Gasparrini A, Bell M, et al. Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locations. Lancet Planet Health. 2021;5:e579–87. 10.1016/S2542-5196(21)00200-X
103. Ye T, Guo Y, Chen G, Yue X, Xu R, Coêlho MSZS, et al. Risk and burden of hospital admissions associated with wildfire-related PM2·5 in Brazil, 2000–15: a nationwide time-series study. Lancet Planet Health 2021;5:e599–607. 10.1016/S2542-5196(21)00173-X
104. Leibel S, Nguyen M, Brick W, Parker J, Ilango S, Aguilera R, et al. Increase in pediatric respiratory visits associated with santa ana wind-driven wildfire smoke and PM(2.5) levels in San Diego county. Ann Am Thorac Soc. 2020;17(3):313–20. 10.1513/AnnalsATS.201902-150OC
105. Haikerwal A, Doyle LW, Wark JD, Irving L, Cheong JL. Wildfire smoke exposure and respiratory health outcomes in young adults born extremely preterm or extremely low birthweight. Environ Res. 2021;197:111159. 10.1016/j.envres.2021.111159
106. Orr A, Migliaccio C, Buford M, Ballou S, Migliaccio. Sustained effects on lung function in community members following exposure to hazardous PM(2.5) levels from wildfire smoke. Toxics. 2020;8(3):53. 10.3390/toxics8030053
107. Doubleday A, Schulte J, Sheppard L, Kadlec M, Dhammapala R, Fox J, et al. Mortality associated with wildfire smoke exposure in Washington state, 2006-2017: a case-crossover study. Environ Health. 2020;19(1):4. 10.1186/s12940-020-0559-2
108. Kiser D, Elhanan G, Metcalf WJ, Schnieder B, Grzymski JJ. SARS-CoV-2 test positivity rate in Reno, Nevada: association with PM2.5 during the 2020 wildfire smoke events in the western United States. J Expo Sci Environ Epidemiol. 2021;13:1–7. 10.1038/s41370-021-00366-w
109. Navarro KM, Clark KA, Hardt DJ, Reid CE, Lahm PW, Domitrovich JW, et al. Wildland firefighter exposure to smoke and COVID-19: A new risk on the fire line. Sci Total Environ. 2021;760:144296. 10.1016/j.scitotenv.2020.144296
110. Curtis L. PM2.5, NO2, wildfires, and other environmental exposures are linked to higher Covid 19 incidence, severity, and death rates. Environ Sci Pollut Res Int. 2021;28:54429–47. 10.1007/s11356-021-15556-0
111. IPCC REPORT 2021: The physical science basis. Available in https://www.ipcc.ch/report/sixth-assessment-report-cycle/ Accessed August, 2021.
112. IPCC REPORT 2022: AR6 climate change 2022: impacts, adaptation and vulnerability. Available in: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Accessed March, 2022.
113. IPCC REPORT 2022: AR6 climate change 2022: mitigation of clmate change. Available in: https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/ Accessed March, 2022.
