Eosinophil: A central player in modulating pathological complexity in asthma

Main Article Content

Pulak Pritam
Sanjeet Manna
Abhishek Sahu
Shasank Sekhar Swain
Shankar Ramchandani
Sachidananda Bissoyi
Manasa Kumar Panda
Yengkhom Disco Sing
Yugal Kishore Mohanta
Rajendra Kumar Behera
Bimal Prasad Jit


eosinophil, asthma, allergy, inflammation, bronchoconstriction


Eosinophils are the major inflammatory cells which play a crucial role in the development of allergic and non-allergic asthma phenotypes. Eosinophilic asthma is the most heterogeneous phenotype where activated eosinophils are reported to be significantly associated with asthma severity. Activated eosinophils display an array of cell adhesion molecules that not only act as an activation marker, suitable for assessing severity, but also secrete several tissue factors, cytokines and chemokines which modulate the clinical severity. Eosinophil activations are also strictly associated with activation of other hetero cellular populations like neutrophils, macrophages, mast cells, and platelets which culminate in the onset and progression of abnormal phenotypes such as bronchoconstriction, allergic response, fibrosis instigated by tissue inflammation, epithelial injury, and oxidative stress. During the activated state, eosinophils release several potent toxic signaling molecules such as major basic proteins, eosinophil peroxidase, eosinophil cationic protein (ECP), and lipid mediators, rendering tissue damage and subsequently leading to allergic manifestation. The tissue mediators render a more complex manifestation of a severe phenotype by activating prominent signaling cross-talk. Here, in the current review with the help of search engines of PubMed, Medline, etc, we have tried to shed light and explore some of the potent determinants regulating eosinophil activation leading to asthma phenotype.

Abstract 536 | PDF Downloads 413 XML Downloads 38 HTML Downloads 15


1. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006;355(21):2226–2235. https://doi.org/10.1056/NEJMra054308

2. Antó JM, Sunyer J, Basagana X, Garcia‐Esteban R, Cerveri I, De Marco R, Heinrich J, Janson C, Jarvis D, et al. Risk factors of new-onset asthma in adults: a population-based international cohort study. Allergy. 2010;65(8):1021–1030. https://doi.org/10.1111/j.1398-9995.2009.02301.x

3. Mukherjee AB, Zhang Z. Allergic asthma: influence of genetic and environmental factors. J Biol Chem. 2011;286(38):32883–32889. https://doi.org/10.1074/jbc.R110.197046

4. Tamura N, Agrawal DK, Suliaman FA, Townley RG. Effects of platelet activating factor on the chemotaxis of normodense eosinophils from normal subjects. Biochem Biophys Res Commun. 1987;142(3):638–644. https://doi.org/10.1016/0006-291X(87)91462-8

5. Global Asthma Network. The global asthma report 2018. 2018. http://globalasthmareport.org/Global%20Asthma%20 Report%202018.pdf (accessed 8 October 2018)).

6. Ordoñez CL, Khashayar R, Wong HH, Ferrando RO, Wu R, Hyde DM et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 2001;163(2):517–523. https://doi.org/10.1164/ajrccm.163.2.2004039

7. Holgate ST, Arshad HS, Roberts GC, Howarth PH, Thurner P, Davies DE. A new look at the pathogenesis of asthma. Clin Sci (Lond). 2009;118(7):439–450. https://doi.org/10.1042/CS20090474

8. Ulfman LH, Joosten DP, van Aalst CW, Lammers JW, van de Graaf EA, Koenderman L et al. Platelets promote eosinophil adhesion of patients with asthma to endothelium under flow conditions. Am J Respir Cell Mol Biol. 2003;28(4):512–519. https://doi.org/10.1165/rcmb.4806

9. Monteseirin J. Neutrophils and asthma. J Investig Allergol Clin Immunol. 2009;19(5):340–354.

10. Virchow Jr. JC, Kroegel C, Walker C, Matthys H. Inflammatory determinants of asthma severity: mediator and cellular changes in bronchoalveolar lavage fluid of patients with severe asthma. J Allergy Clin Immunol. 1996;98(5):S27–-S40. https://doi.org/10.1016/S0091-6749(96)70014-3

11. Durrani SR, Viswanathan RK, Busse WW. What effect does asthma treatment have on airway remodeling? Current perspectives. J Allergy Clin Immunol. 2011;128(3):439–448. https://doi.org/10.1016/j.jaci.2011.06.002

12. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2014;16(1):45–56. https://doi.org/10.1038/ni.3049

13. Walker C, Kaegi MK, Braun P, Blaser K. Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J Allergy Clin Immunol. 1991;88(6):935–942. https://doi.org/10.1016/0091-6749(91)90251-I

14. Smith SG, Chen R, Kjarsgaard M, Huang C, Oliveria JP, O'Byrne PM, et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J Allergy Clin Immunol. 2016;137(1):75–86. https://doi.org/10.1016/j.jaci.2015.05.037

15. Tomassini M, Tsicopoulos A, Tai PC, Gruart V, Tonnel AB, Prin L, et al. Release of granule proteins by eosinophils from allergic and nonallergic patients with eosinophilia on immunoglobulin-dependent activation. J Allergy Clin Immunol. 1991;88(3):365–375. https://doi.org/10.1016/0091-6749(91)90099-A

16. Gauvreau GM, Ellis AK, Denburg JA. Haemopoietic processes in allergic disease: eosinophil/basophil development. Clin Exp Allergy. 2009;39(9):1297–1306. https://doi.org/10.1111/j.1365-2222.2009.03325.x

17. Kita H. Eosinophils: multifaceted biological properties and roles in health and disease. Immunol Rev. 2011;242(1):161–177. https://doi.org/10.1111/j.1600-065X.2011.01026.x

18. Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: eosinophilic airway inflammation in nonallergic asthma. Nat Med. 2013;19(8):977–979. https://doi.org/10.1038/nm.3300

19. Price DB, Rigazio A, Campbell JD, Bleecker ER, Corrigan CJ, Thomas M, et al. Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. Lancet Respir Med. 2015;3(11):849–858. https://doi.org/10.1016/S2213-2600(15)00367-7

20. Froidure A, Mouthuy J, Durham SR, Chanez P, Sibille Y, Pilette C. Asthma phenotypes and IgE responses. Eur Respir J. 2015;47(1):304–319. https://doi.org/10.1183/13993003.01824-2014

21. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360(10):985–993. https://doi.org/10.1056/NEJMoa0805435

22. Pavord ID. Eosinophilic phenotypes of airway disease. Ann Am Thorac Soc. 2013;10(Supplement):S143–S149. https://doi.org/10.1513/AnnalsATS.201306-168AW

23. Tibério IF, Turco GM, Leick-Maldonado EA, Sakae RS, Paiva SO, Do Patrocínio M, et al. Effects of neurokinin depletion on airway inflammation induced by chronic antigen exposure. Am J Respir Crit Care Med. 1997;155(5):1739–1747. https://doi.org/10.1164/ajrccm.155.5.9154886

24. Miranda C, Busacker A, Balzar S, Trudeau J, Wenzel SE. Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol. 2004;113(1):101–108. https://doi.org/10.1016/j.jaci.2003.10.041

25. Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, et al. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Cell Mol Physiol. 2012;303(11):L939–L952. https://doi.org/10.1152/ajplung.00034.2012

26. Kay AB. The role of eosinophils in the pathogenesis of asthma. Trends Mol Med. 2005;11(4):148–152. https://doi.org/10.1016/j.molmed.2005.02.002

27. Wardlaw AJ. Molecular basis for selective eosinophil trafficking in asthma: a multistep paradigm. J Allergy Clin Immunol. 1999;104(5):917–926. https://doi.org/10.1016/S0091-6749(99)70069-2

28. Van der Bruggen T, Koenderman L. Signal transduction in eosinophils. Clin Exp Allergy. 1996;26(8):880–891. https://doi.org/10.1111/j.1365-2222.1996.tb00622.x; https://doi.org/10.1046/j.1365-2222.1996.d01-391.x

29. Johansson MW. Activation states of blood eosinophils in asthma. Clin Exp Allergy. 2014;44(4):482–498. https://doi.org/10.1111/cea.12292

30. Luijk B, Lindemans CA, Kanters D, van der Heijde R, Bertics P, Lammers JW, et al. Gradual increase in priming of human eosinophils during extravasation from peripheral blood to the airways in response to allergen challenge. J Allergy Clin Immunol. 2005;115(5):997–1003. https://doi.org/10.1016/j.jaci.2005.02.002

31. Johansson MW, Kelly EAB, Busse WW, Jarjour NN, Mosher DF. Up-regulation and activation of eosinophil integrins in blood and airway after segmental lung antigen challenge. J Immunol. 2008;180(11):7622–7635. https://doi.org/10.4049/jimmunol.180.11.7622

32. Johansson MW. Eosinophil activation status in separate compartments and association with asthma. Front Med. 2017;4:75. https://doi.org/10.3389/fmed.2017.00075

33. Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13(1):9–22. https://doi.org/10.1038/nri3341

34. Thomas A, Busse WW. The evolving role of eosinophils in asthma. In: Lee JJ, Rosenberg HF, editors. Eosinophils in health and disease. Amsterdam: Elsevier; 2013. p. 431–536. https://doi.org/10.1016/B978-0-12-394385-9.00013-4

35. Hamann J, Koning N, Pouwels W, Ulfman LH, van Eijk M, Stacey M, et al. EMR1, the human homolog of F4/80, is an eosinophil-specific receptor. Eur J Immunol. 2007;37(10):2797–2802. https://doi.org/10.1002/eji.200737553

36. Giembycz MA, Lindsay MA. Pharmacology of the eosinophil. Pharmacol Rev. 1999;51(2):213–340.

37. Saito H, Morikawa H, Howie K, Crawford L, Baatjes AJ, Denburg E, et al. Effects of a cysteinyl leukotriene receptor antagonist on eosinophil recruitment in experimental allergic rhinitis. Immunology. 2004;113(2):246–252. https://doi.org/10.1111/j.1365-2567.2004.01944.x

38. Hallstrand TS, Henderson Jr WR. An update on the role of leukotrienes in asthma. Curr Opin Allergy Clin Immunol. 2010;10(1):60–66. https://doi.org/10.1097/ACI.0b013e32833489c3

39. Kawano T, Matsuse H, Kondo Y, Machida I, Saeki S, Tomari S, et al. Cysteinyl leukotrienes induce nuclear factor κb activation and rantes production in a murine model of asthma. J Allergy Clin Immunol. 2003;112(2):369–374. https://doi.org/10.1067/mai.2003.1636

40. Spada CS, Nieves AL, Krauss A-P, Woodward DF. Effects of leukotrienes B4 (LTB4) and D4 (LTD4) on motility of isolated normodense human eosinophils and neutrophils. Adv Exp Med Bio. 1997;400:699–706.

41. Chung KF, Barnes PJ. Cytokines in asthma. Thorax. 1999;54(9):825–857. https://doi.org/10.1136/thx.54.9.825

42. Lacy P, Moqbel R. Eosinophil cytokines. Chem Immunol Allergy. 2000;76:134–155. https://doi.org/10.1159/000058782

43. Liu LY, Bates ME, Jarjour NN, Busse WW, Bertics PJ, Kelly EAB. Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-α. J Immunol. 2007;179(7):4840–4848. https://doi.org/10.4049/jimmunol.179.7.4840

44. Moqbel R, Levi-Schaffer F, Kay AB. Cytokine generation by eosinophils. J Allergy Clin Immunol. 1994;94(6):1183–1188. https://doi.org/10.1016/0091-6749(94)90330-1

45. Esnault S, Kelly EA. Essential mechanisms of differential activation of eosinophils by IL-3 compared to GM-CSF and IL-5. Crit Rev Immunol. 2016;36(5):429–444. https://doi.org/10.1615/CritRevImmunol.2017020172

46. Nakajima H, Hirose K. Role of IL-23 and Th17 cells in airway inflammation in asthma. Immune Netw. 2010;10(1):1–4. https://doi.org/10.4110/in.2010.10.1.1

47. Guerra ES, Lee CK, Specht CA, Yadav B, Huang H, Akalin A, et al. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog. 2017;13(1):e1006175–e1006175. https://doi.org/10.1371/journal.ppat.1006175

48. Cheung PFY, Wong CK, Lam CWK. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J Immunol. 2008;180(8):5625–5635. https://doi.org/10.4049/jimmunol.180.8.5625

49. Esnault S, Kelly EAB, Nettenstrom LM, Cook EB, Seroogy CM, Jarjour NN. Human eosinophils release IL-1ß and increase expression of IL-17A in activated CD4+ T lymphocytes. Clin Exp Allergy. 2012;42(12):1756–1764. https://doi.org/10.1111/j.1365-2222.2012.04060.x

50. Louten J, Boniface K, de Waal Malefyt R. Development and function of TH17 cells in health and disease. J Allergy Clin Immunol. 2009;123(5):1004–1011. https://doi.org/10.1016/j.jaci.2009.04.003

51. Ota K, Kawaguchi M, Matsukura S, Kurokawa M, Kokubu F, Fujita J, et al. Potential involvement of IL-17F in asthma. J Immunol Res. 2014;2014:602846. https://doi.org/10.1155/2014/602846

52. Bandeira-Melo C, Sugiyama K, Woods LJ, Phoofolo M, Center DM, Cruikshank WW, et al. IL-16 promotes leukotriene C4 and IL-4 release from human eosinophils via CD4- and autocrine CCR3-chemokine-mediated signaling. J Immunol. 2002;168(9):4756–4763. https://doi.org/10.4049/jimmunol.168.9.4756

53. Deo SS, Mistry KJ, Kakade AM, Niphadkar PV. Role played by Th2 type cytokines in IgE mediated allergy and asthma. Lung India. 2010;27(2):66–71. https://doi.org/10.4103/0970-2113.63609

54. Petty HR, Worth RG, Todd RF. Interactions of integrins with their partner proteins in leukocyte membranes. Immunol Res. 2002;25(1):75–96. https://doi.org/10.1385/IR:25:1:75

55. Johansson MW, Annis DS, Mosher DF. α(M)β(2) integrin-mediated adhesion and motility of IL-5-stimulated eosinophils on periostin. Am J Respir Cell Mol Biol. 2013;48(4):503–510. https://doi.org/10.1165/rcmb.2012-0150OC

56. Kaneko M, Horie S, Kato M, Gleich GJ, Kita H. A crucial role for beta 2 integrin in the activation of eosinophils stimulated by IgG. J Immunol, 1995;155(5):2631–2641.

57. Park BL, Kim LH, Choi YH, et al. Interleukin 3 (IL3) polymorphisms associated with decreased risk of asthma and atopy. J Hum Genet. 2004;49(10):517–527. https://doi.org/10.1007/s10038-004-0184-x

58. Schroeder JT, Chichester KL, Bieneman AP. Human basophils secrete IL-3: evidence of autocrine priming for phenotypic and functional responses in allergic disease. J Immunol. 2009;182(4):2432–2438. https://doi.org/10.4049/jimmunol.0801782

59. Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity. 2019;50(4):796–811. https://doi.org/10.1016/j.immuni.2019.03.022

60. Esnault S, Kelly EAB, Shen Z-J, Johansson MW, Malter JS, Jarjour NN. IL-3 maintains activation of the p90S6K/RPS6 pathway and increases translation in human eosinophils. J Immunol. 2015;195(6):2529–2539. https://doi.org/10.4049/jimmunol.1500871

61. Esnault S, Kelly EA, Johansson MW, Liu LY, Han ST, Akhtar M, et al. Semaphorin 7A is expressed on airway eosinophils and upregulated by IL-5 family cytokines. Clin Immunol. 2014;150(1):90–100. https://doi.org/10.1016/j.clim.2013.11.009

62. Esnault S, Johansson MW, Kelly EA, Koenderman L, Mosher DF, Jarjour NN. IL-3 up-regulates and activates human eosinophil CD32 and αMβ2 integrin causing degranulation. Clin Exp Allergy. 2017;47(4):488–498. https://doi.org/10.1111/cea.12876

63. Mou Z, Xia J, Tan Y, Wang X, Zhang Y, Zhou B, et al. Overexpression of thymic stromal lymphopoietin in allergic rhinitis. Acta Otolaryngol. 2009;129(3):297–301. https://doi.org/10.1080/00016480802225884

64. Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy JV, Hamilton RG, et al. Asthma outcomes: biomarkers. J Allergy Clin Immunol. 2012;129(3 Suppl):S9–S23. https://doi.org/10.1016/j.jaci.2011.12.979

65. Matsuda A, Ebihara N, Yokoi N, Kawasaki S, Tanioka H, Inatomi T, et al. Functional role of thymic stromal lymphopoietin in chronic allergic keratoconjunctivitis. Investig Opthalmology Vis Sci. 2010;51(1):151. https://doi.org/10.1167/iovs.09-4183

66. Cook EB, Stahl JL, Schwantes EA, Fox KE, Mathur SK. IL-3 and TNFα increase Thymic Stromal Lymphopoietin Receptor (TSLPR) expression on eosinophils and enhance TSLP-stimulated degranulation. Clin Mol Allergy. 2012;10(1):8. https://doi.org/10.1186/1476-7961-10-8

67. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–1223. https://doi.org/10.1084/jem.20051135

68. Kita H, Weiler DA, Abu-Ghazaleh R, Sanderson CJ, Gleich GJ. Release of granule proteins from eosinophils cultured with IL-5. J Immunol, 1992;149(2):629–635.

69. Tedla N, Bandeira-Melo C, Tassinari P, Sloane DE, Samplaski M, Cosman D, et al. Activation of human eosinophils through leukocyte immunoglobulin-like receptor 7. Proc Natl Acad Sci U S A. 2003;100(3):1174–1179. https://doi.org/10.1073/pnas.0337567100

70. Schweizer RC, van Kessel‐Welmers BA, Warringa RA, Maikoe T, Raaijmakers JA, Lammers JW, et al. Mechanisms involved in eosinophil migration. Platelet-activating factor-induced Chemotaxis and interleukin-5-induced chemokinesis are mediated by different signals. J Leukoc Biol. 1996;59(3):347–356. https://doi.org/10.1002/jlb.59.3.347

71. Tamura N, Agrawal DK, Suliaman FA, Townley RG. Effects of platelet activating factor on the chemotaxis of normodense eosinophils from normal subjects. Biochem Biophys Res Commun. 1987;142(3):638–644. https://doi.org/10.1016/0006-291X(87)91462-8

72. Chung KF, Barnes PJ. Role for platelet-activating factor in asthma. Lipids. 1991;26(12):1277–1279. https://doi.org/10.1007/BF02536547

73. Kimani G, Tonnesen MG, Henson PM. Stimulation of eosinophil adherence to human vascular endothelial cells in vitro by platelet-activating factor. J Immunol, 1988;140(9):3161–3166.

74. Kato M, Kita H, Tachibana A, Hayashi Y, Tsuchida Y, Kimura H. Dual signaling and effector pathways mediate human eosinophil activation by platelet-activating factor. Int Arch Allergy Immunol. 2004;134(1):37–43. https://doi.org/10.1159/000077791

75. Emery DL, Djokic TD, Graf PD, Nadel JA. Prostaglandin D2 causes accumulation of eosinophils in the lumen of the dog trachea. J Appl Physiol. 1989;67(3):959–962. https://doi.org/10.1152/jappl.1989.67.3.959

76. Monneret G, Cossette C, Gravel S, Rokach J, Powell WS. 15R-Methyl-prostaglandin D2 is a potent and selective CRTH2/DP2 receptor agonist in human eosinophils. J Pharmacol Exp Ther. 2003;304(1):349–355. https://doi.org/10.1124/jpet.102.042937

77. Sawyer N, Cauchon E, Chateauneuf A, Cruz RP, Nicholson DW, Metters KM, et al. Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2. Br J Pharmacol. 2002;137(8):1163–1172. https://doi.org/10.1038/sj.bjp.0704973

78. Schwingshackl A, Duszyk M, Brown N, Moqbel R. Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-α. J Allergy Clin Immunol. 1999;104(5):983–990. https://doi.org/10.1016/S0091-6749(99)70079-5

79. DiScipio RG, Schraufstatter IU, Sikora L, Zuraw BL, Sriramarao P. C5a mediates secretion and activation of matrix metalloproteinase 9 from human eosinophils and neutrophils. Int Immunopharmacol. 2006;6(7):1109–1118. https://doi.org/10.1016/j.intimp.2006.02.006

80. Vu TH. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14(17):2123–2133. https://doi.org/10.1101/gad.815400

81. McMillan SJ, Kearley J, Campbell JD, Zhu XW, Larbi KY, Shipley JM, et al. Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol. 2004;172(4):2586–2594. https://doi.org/10.4049/jimmunol.172.4.2586

82. Ingram J, Kraft M. Metalloproteinases as modulators of allergic asthma: therapeutic perspectives. Met Med. 2015;2:61–74. https://doi.org/10.2147/MNM.S63614

83. Ohbayashi H, Shimokata K. Matrix metalloproteinase-9 and airway remodeling in asthma. Curr Drug Target - Inflammation Allergy. 2005;4(2):177–181. https://doi.org/10.2174/1568010053586246

84. Hallsworth MP, Twort CH, Lee TH, Hirst SJ. Beta(2)-adrenoceptor agonists inhibit release of eosinophil-activating cytokines from human airway smooth muscle cells. Br J Pharmacol. 2001;132(3):729–741. https://doi.org/10.1038/sj.bjp.0703866

85. Lazzeri N, Belvisi MG, Patel HJ, Yacoub MH, Fan Chung K, Mitchell JA. Effects of prostaglandin E2 and cAMP elevating drugs on GM-CSF release by cultured human airway smooth muscle cells. Am J Respir Cell Mol Biol. 2001;24(1):44–48. https://doi.org/10.1165/ajrcmb.24.1.4027

86. Toda A, Yokomizo T, Shimizu T. Leukotriene B4 receptors. Prostaglandins Other Lipid Mediat. 2002;68-69:575–585. https://doi.org/10.1016/S0090-6980(02)00056-4

87. Kelly EAB, Liu LY, Esnault S, Quinchia Johnson BH, Jarjour NN. Potent synergistic effect of IL-3 and TNF on matrix metalloproteinase 9 generation by human eosinophils. Cytokine. 2012;58(2):199–206. https://doi.org/10.1016/j.cyto.2012.01.009

88. Kelly EA, Esnault S, Johnson SH, Liu LY, Malter JS, Burnham ME, et al. Human eosinophil activin A synthesis and mRNA stabilization are induced by the combination of IL-3 plus TNF. Immunol Cell Biol. 2016;94(7):701–708. https://doi.org/10.1038/icb.2016.30

89. Wong CK, Ip WK, Lam CWK. Interleukin-3, -5, and granulocyte macrophage colony-stimulating factor–induced adhesion molecule expression on eosinophils by p38 mitogen-activated protein kinase and nuclear factor-κB. Am J Respir Cell Mol Biol. 2003;29(1):133–147. https://doi.org/10.1165/rcmb.2002-0289OC

90. Wong GW, Li ST, Hui DS, Fok TF, Zhong NS, Chen YZ, et al. Individual allergens as risk factors for asthma and bronchial hyperresponsiveness in Chinese children. Eur Respir J. 2002;19(2):288–293. https://doi.org/10.1183/09031936.02.002319.02

91. Wong CK, Wang CB, Ip WK, Tian YP, Lam CWK. Role of p38 MAPK and NF-kB for chemokine release in coculture of human eosinophils and bronchial epithelial cells. Clin Exp Immunol. 2005;139(1):90–100. https://doi.org/10.1111/j.1365-2249.2005.02678.x

92. Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NF, et al. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med. 1994;179(3):881–887. https://doi.org/10.1084/jem.179.3.881

93. Lloyd C. Chemokines in allergic lung inflammation. Immunol. 2002;105(2):144–154. https://doi.org/10.1046/j.1365-2567.2002.01344.x

94. Humbles AA, Conroy DM, Marleau S, Rankin SM, Palframan RT, Proudfoot AE, et al. Kinetics of eotaxin generation and its relationship to eosinophil accumulation in allergic airways disease: analysis in a guinea pig model in vivo. J Exp Med. 1997;186(4):601–612. https://doi.org/10.1084/jem.186.4.601

95. Kitaura M, Nakajima T, Imai T, Harada S, Combadiere C, Tiffany HL, et al. Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. J Biol Chem. 1996;271(13):7725–7730. https://doi.org/10.1074/jbc.271.13.7725

96. Uguccioni M, Mackay CR, Ochensberger B, Loetscher P, Rhis S, LaRosa GJ, et al. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest. 1997;100(5):1137¬–1143. https://doi.org/10.1172/JCI119624

97. Nakajima H, Gleich GJ, Kita H. Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils. J Immunol. 1996;156(12):4859–4866.

98. El-Shazly A, Yamaguchi N, Masuyama K, Suda T, Ishikawa T. Novel association of the Src family kinases, Hck and c-Fgr, with CCR3 receptor stimulation: a possible mechanism for eotaxin-induced human eosinophil chemotaxis. Biochem Biophys Res Commun. 1999;264(1):163–170. https://doi.org/10.1006/bbrc.1999.1379

99. Lee MH, Choi JW, Jang WR, Kim JM, Kim JH. Activation of eosinophils is more closely linked with interleukin-5 and nitric oxide production than tumor necrosis factor-a and immunoglobulin E levels. Acta Haematol. 2013;130(4):238–241. https://doi.org/10.1159/000350474

100. Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;73(22):4249–4264. https://doi.org/10.1007/s00018-016-2293-z

101. Ziche M, Morbidelli L, Parenti A, Amerini S, Granger HJ, Maggi CA. Substance P increases cyclic GMP levels on coronary postcapillary venular endothelial cells. Life Sci. 1993;53(14):PL229–PL234. https://doi.org/10.1016/0024-3205(93)90556-I

102. Nguyen LS, Villablanca AC, Rutledge JC. Substance P increases microvascular permeability via nitric oxide-mediated convective pathways. Am J Physiol Integr Comp Physiol. 1995;268(4):R1060–R1068. https://doi.org/10.1152/ajpregu.1995.268.4.R1060

103. Kroegel C, Giembycz MA, Barnes PJ. Characterization of eosinophil cell activation by peptides. Differential effects of substance P, melittin, and FMET-Leu-Phe. J Immunol. 1990;145:2581–2587.

104. Moncada SR. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109–142.

105. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329:2002–2012. https://doi.org/10.1056/NEJM199312303292706

106. Prado CM, Martins MA, Tibério IFLC. Nitric oxide in asthma physiopathology. ISRN Allergy. 2011;2011:832560. https://doi.org/10.5402/2011/832560

107. Hynes RO. Integrins. Cell. 2002;110(6):673–687. https://doi.org/10.1016/S0092-8674(02)00971-6

108. Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, et al. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008;38(5):709–750. https://doi.org/10.1111/j.1365-2222.2008.02958.x

109. Barthel SR, Jarjour NN, Mosher DF, Johansson MW. Dissection of the hyperadhesive phenotype of airway eosinophils in asthma. Am J Respir Cell Mol Biol. 2006;35(3):378–386. https://doi.org/10.1165/rcmb.2006-0027OC

110. Barthel SR, Johansson MW, McNamee DM, Mosher DF. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J Leukoc Biol. 2008;83(1):1–12. https://doi.org/10.1189/jlb.0607344

111. Banerjee ER, Jiang Y, Henderson Jr WR, Latchman Y, Papayannopoulou T. Absence of alpha 4 but not beta 2 integrins restrains development of chronic allergic asthma using mouse genetic models. Exp Hematol. 2009;37(6):715.e3–727.e3. https://doi.org/10.1016/j.exphem.2009.03.010

112. Takaku Y, Nakagome K, Kobayashi T, Hagiwara K, Kanazawa M, Nagata M. IFN-γ-inducible protein of 10 kDa upregulates the effector functions of eosinophils through β2 integrin and CXCR3. Respir Res. 2011;12(1):138. https://doi.org/10.1186/1465-9921-12-138

113. McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest. 1989;84(1):92–99. https://doi.org/10.1172/JCI114175

114. Andre P. P-selectin in haemostasis. Br J Haematol. 2004;126(3):298–306. https://doi.org/10.1111/j.1365-2141.2004.05032.x

115. Kappelmayer J, Nagy B, Miszti-Blasius K, Hevessy Z, Setiadi H. The emerging value of P-selectin as a disease marker. Clin Chem Lab Med. 2004;42(5):475–486. https://doi.org/10.1515/CCLM.2004.082

116. Johansson MW, Mosher DF. Activation of beta1 integrins on blood eosinophils by P-selectin. Am J Respir Cell Mol Biol. 2011;45(4):889–897. https://doi.org/10.1165/rcmb.2010-0402OC

117. Epstein FH, Lewis RA, Austen KF, Soberman RJ. Leukotrienes and other products of the 5-lipoxygenase pathway. N Engl J Med. 1990;323(10):645–655. https://doi.org/10.1056/NEJM199009063231006

118. Laitinen LA, Haahtela T, Vilkka V, Lee TH, Spur BW. Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet. 1993;341(8851):989–990. https://doi.org/10.1016/0140-6736(93)91073-U

119. Ahmad A, Shameem M, Husain Q. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med. 2012;7(4):226–232. https://doi.org/10.4103/1817-1737.102182

120. Nadeem A, Raj HG, Chhabra SK. Increased oxidative stress in acute exacerbations of asthma. J Asthma. 2005;42(1):45–50. https://doi.org/10.1081/JAS-200044774

121. Dworski R. Oxidant stress in asthma. Thorax. 2000;55(Suppl 2):S51–S53. https://doi.org/10.1136/thorax.55.suppl_2.S51

122. Kanazawa H, Kurihara N, Hirata K, Takeda T. The role of free radicals in airway obstruction in asthmatic patients. Chest. 1991;100(5):1319–1322. https://doi.org/10.1378/chest.100.5.1319

123. Sanders SP, Zweier JL, Harrison SJ, Trush MA, Rembish SJ, Liu MC. Spontaneous oxygen radical production at sites of antigen challenge in allergic subjects. Am J Respir Crit Care Med. 1995;151(6):1725–1733. https://doi.org/10.1164/ajrccm.151.6.7767513

124. Vedel-Krogh S, Fallgaard Nielsen S, Lange P, Vestbo J, Nordestgaard BG. Association of blood eosinophil and blood neutrophil counts with asthma exacerbations in the Copenhagen general population study. Clin Chem. 2017;63(4):823–832. https://doi.org/10.1373/clinchem.2016.267450

125. De Raeve HR, Thunnissen FB, Kaneko FT, Guo FH, Lewis M, Kavuru MS, et al. Decreased Cu,Zn-SOD activity in asthmatic airway epithelium: correction by inhaled corticosteroid in vivo. Am J Physiol Cell Mol Physiol. 1997;272(1):L148–L154. https://doi.org/10.1152/ajplung.1997.272.1.L148

126. Jatakanon A, Uasuf C, Maziak W, Lim SAM, Chung KF, Barnes PJ. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med. 1999;160(5):1532–1539. https://doi.org/10.1164/ajrccm.160.5.9806170

127. MacPherson JC, Comhair SA, Erzurum SC, Klein DF, Lipscomb MF, Kavuru MS, et al. Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J Immunol. 2001;166(9):5763–5772. https://doi.org/10.4049/jimmunol.166.9.5763

128. Wu W, Samoszuk MK, Comhair SA, Thomassen MJ, Farver CF, Dweik RA, et al. Eosinophils generate brominating oxidants in allergen-induced asthma. J Clin Invest. 2000;105(10):1455–1463. https://doi.org/10.1172/JCI9702

129. Bozeman PM, Learn DB, Thomas EL. Assay of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. J Immunol Methods. 1990;126(1):125–133. https://doi.org/10.1016/0022-1759(90)90020-V

130. Honda K, Chihara J. Eosinophil activation by eotaxin-eotaxin primes the production of reactive oxygen species from eosinophils. Allergy. 1999;54(12):1262–1269. https://doi.org/10.1034/j.1398-9995.1999.00170.x

131. Fischkoff SA. Graded increase in probability of eosinophilic differentiation of HL-60 promyelocytic leukemia cells induced by culture under alkaline conditions. Leuk Res. 1988;12(8):679–686. https://doi.org/10.1016/0145-2126(88)90103-8

132. Lopez JA, Newburger PE, Condino-Neto A. The effect of IFN-γand TNF-α on the eosinophilic differentiation and NADPH oxidase activation of human HL-60 clone 15 cells. J Interf Cytokine Res. 2003;23(12):737–744. https://doi.org/10.1089/107999003772084851

133. Badewa AP, Hudson CE, Heiman AS. Regulatory effects of eotaxin, eotaxin-2, and eotaxin-3 on eosinophil degranulation and superoxide anion generation 1. Exp Biol Med. 2002;227(8):645–651. https://doi.org/10.1177/153537020222700814

134. Zimmermann N, Daugherty BL, Stark JM, Rothenberg ME. Molecular analysis of CCR-3 events in eosinophilic cells. J Immunol. 2000;164(2):1055–1064. https://doi.org/10.4049/jimmunol.164.2.1055

135. Tiffany HL, Alkhatib G, Combadiere C, Berger EA, Murphy PM. CC chemokine receptors 1 and 3 are differentially regulated by IL-5 during maturation of eosinophilic HL-60 cells. J Immunol. 1998;160:1385–1392.

136. Woschnagg C, Garcia R, Rak S, Venge P. IL-5 priming of the PMA-induced oxidative metabolism of human eosinophils from allergic and normal subjects during a pollen season. Clin Exp Allergy. 2001;31(4):555–564. https://doi.org/10.1046/j.1365-2222.2001.00995.x

137. Lavinskiene S, Malakauskas K, Jeroch J, Hoppenot D, Sakalauskas R. Functional activity of peripheral blood eosinophils in allergen-induced late-phase airway inflammation in asthma patients. J Inflamm (Lond). 2015;12:25. https://doi.org/10.1186/s12950-015-0065-4

138. Ahluwalia J, Tinker A, Clapp LH, Duchen MR, Abramov AY, Pope S, et al. The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature. 2004;427(6977):853–858. https://doi.org/10.1038/nature02356

139. Thompson NT, Tateson JE, Randall RW, Spacey GD, Bonser RW, Garland LG. The temporal relationship between phospholipase activation, diradylglycerol formation and superoxide production in the human neutrophil. Biochem J. 1990;271(1):209–213. https://doi.org/10.1042/bj2710209

140. Kessels GC, Roos D, Verhoeven AJ. fMet-Leu-Phe-induced activation of phospholipase D in human neutrophils. Dependence on changes in cytosolic free Ca2+ concentration and relation with respiratory burst activation. J Biol Chem. 1991;266:23152–23156.

141. Kita H, Abu-Ghazaleh RI, Gleich GJ, Abraham RT. Role of pertussis toxin-sensitive G proteins in stimulus-dependent human eosinophil degranulation. J Immunol. 1991;147:3466–3473.

142. Wan Y, Kurosaki T, Huang X-Y. Tyrosine kinases in activation of the MAP kinase cascade by G-protein-coupled receptors. Nature. 1996;380(6574):541–544. https://doi.org/10.1038/380541a0

143. Schwingshackl A, Moqbel R, Duszyk M. Involvement of ion channels in human eosinophil respiratory burst. J Allergy Clin Immunol. 2000;106(2):272–279. https://doi.org/10.1067/mai.2000.107752

144. Steinberg SF. Structural basis of protein kinase C isoform function. Physiol Rev. 2008;88(4):1341–1378. https://doi.org/10.1152/physrev.00034.2007

145. Stolarski B, Kurowska-Stolarska M, Kewin P, Xu D, Liew FY. IL-33 Exacerbates eosinophil-mediated airway inflammation. J Immunol. 2010;185(6):3472–3480. https://doi.org/10.4049/jimmunol.1000730

146. Someya A, Nishijima K, Nunoi H, Irie S, Nagaoka I. Study on the superoxide-producing enzyme of eosinophils and neutrophils—comparison of the NADPH oxidase components. Arch Biochem Biophys. 1997;345(2):207–213. https://doi.org/10.1006/abbi.1997.0252

147. Aldridge RE, Chan T, van Dalen CJ, Senthilmohan R, Winn M, Venge P, et al. Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic Biol Med. 2002;33(6):847–856. https://doi.org/10.1016/S0891-5849(02)00976-0

148. Shayma'a J. Raisan, Muna H. Sadeq. Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) effecting on asthma patients in Basra Province, Iraq. Biomed Res. 2018;29(17: 3395-3397. https://doi.org/10.4066/biomedicalresearch.29-18-1024

149. Mitra SN, Slungaard A, Hazen SL. Role of eosinophil peroxidase in the origins of protein oxidation in asthma. Redox Rep. 2000;5(4):215–224. https://doi.org/10.1179/135100000101535771

150. Brennan ML, Wu W, Fu X, Shen Z, Song W, Frost H, et al. A tale of two controversies (defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species). J Biol Chem. 2002;277(20):17415–17427. https://doi.org/10.1074/jbc.M112400200

151. Erzurum SC. New insights in oxidant biology in asthma. Ann Am Thorac Soc. 2016;13:S35–S39.

152. Kaminsky DA, Mitchell J, Carroll N, James A, Soultanakis R, Janssen Y. Nitrotyrosine formation in the airways and lung parenchyma of patients with asthma. J Allergy Clin Immunol. 1999;104(4):747–754. https://doi.org/10.1016/S0091-6749(99)70283-6

153. Saleh D, Ernst P, Lim S, Barnes PJ, Giaid A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J. 1998;12(11):929–937. https://doi.org/10.1096/fasebj.12.11.929

154. Hirai H, Tanaka K, Yoshie O, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193(2):255–261. https://doi.org/10.1084/jem.193.2.255

155. Royer JF, Schratl P, Lorenz S, Kostenis E, Ulven T, Schuligoi R, et al. A novel antagonist of CRTH2 blocks eosinophil release from bone marrow, chemotaxis and respiratory burst. Allergy. 2007;62(12):1401–1409. https://doi.org/10.1111/j.1398-9995.2007.01452.x

156. Horiuchi T, Weller PF. Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol. 1997;17(1):70–77. https://doi.org/10.1165/ajrcmb.17.1.2796

157. Sexton DW, Blaylock MG, Walsh GM. Human alveolar epithelial cells engulf apoptotic eosinophils by means of integrin- and phosphatidylserine receptor-dependent mechanisms: a process upregulated by dexamethasone. J Allergy Clin Immunol. 2001;108(6):962–969. https://doi.org/10.1067/mai.2001.119414

158. Oddera S, Silvestri M, Balbo A, Jovovich BO, Penna R, Grimi E, et al. Airway eosinophilic inflammation, epithelial damage, and bronchial hyperresponsiveness in patients with mild-moderate, stable asthma. Allergy. 1996;51(2):100–107. https://doi.org/10.1111/j.1398-9995.1996.tb04565.x; https://doi.org/10.1111/j.1398-9995.1996.tb00042.x

159. Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8(8):885–889. https://doi.org/10.1038/nm734

160. Lankford SM, Macchione M, Crews AL, Mckane SA, Akley NJ, Martin LD. Modeling the airway epithelium in allergic asthma: interleukin-13-induced effects in differentiated murine tracheal epithelial cells. In Vitro Cell Dev Biol Anim. 2005;41:217–224. https://doi.org/10.1290/0502012.1

161. Shi HZ, Humbles A, Gerard C, Jin Z, Weller PF. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest. 2000;105(7):945–953. https://doi.org/10.1172/JCI8945

162. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–326. https://doi.org/10.1089/jir.2008.0027

163. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776–1784. https://doi.org/10.1172/JCI200320530

164. Royce SG, Cheng V, Samuel CS, Tang MLK. The regulation of fibrosis in airway remodeling in asthma. Mol Cell Endocrinol. 2012;351(2):167–175. https://doi.org/10.1016/j.mce.2012.01.007

165. Redington AE, Madden J, Frew AJ, Djukanovic R, Roche WR, Holgate ST, et al. Transforming growth factor-β1 in Asthma. Am J Respir Crit Care Med. 1997;156(2):642–647. https://doi.org/10.1164/ajrccm.156.2.9605065

166. Zhang S, Smartt H, Holgate ST, Roche WR. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodelling in asthma. Lab Invest. 1999;79:395–405.

167. Howat WJ, Holgate ST, Lackie PM. TGF-β isoform release and activation during in vitro bronchial epithelial wound repair. Am J Physiol Cell Mol Physiol. 2002;282(1):L115–L123. https://doi.org/10.1152/ajplung.2002.282.1.L115

168. Holgate ST, Davies DE, Puddicombe S, Richter A, Lackie P, Lordan J, Howarth P, et al. Mechanisms of airway epithelial damage: epithelial-mesenchymal interactions in the pathogenesis of asthma. Eur Respir J. 2003;22(Supplement 44):24s–29s. https://doi.org/10.1183/09031936.03.00000803

169. Yasukawa A, Hosoki K, Toda M, Miyake Y, Matsushima Y, Matsumoto T, et al. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells. PLoS One. 2013;8(5):e64281–e64281. https://doi.org/10.1371/journal.pone.0064281

170. Sun J, Dahlén B, Agerberth B, Haeggström JZ. The antimicrobial peptide LL-37 induces synthesis and release of cysteinyl leukotrienes from human eosinophils – implications for asthma. Allergy. 2013;68(3):304–311. https://doi.org/10.1111/all.12087

171. Jiao D, Wong CK, Tsang MS, Chu IM, Liu D, Zhu J, et al. Activation of eosinophils interacting with bronchial epithelial cells by antimicrobial peptide LL-37: implications in allergic asthma. Sci Rep. 2017;7(1):1848. https://doi.org/10.1038/s41598-017-02085-5

172. Chu EK, Cheng J, Foley JS, Mecham BH, Owen CA, Haley KJ, et al. Induction of the plasminogen activator system by mechanical stimulation of human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2006;35(6):628–638. https://doi.org/10.1165/rcmb.2006-0040OC

173. Knight DA, Holgate ST. The airway epithelium: structural and functional properties in health and disease. Respirology. 2003;8(4):432–446. https://doi.org/10.1046/j.1440-1843.2003.00493.x

174. Anderson WJ, Short PM, Williamson PA, Manoharan A, Lipworth BJ. The inverse agonist propranolol confers no corticosteroid-sparing activity in mild-to-moderate persistent asthma. Clin Sci. 2014;127(11):635–643. https://doi.org/10.1042/CS20140249

175. Carroll CL, Bhandari A, Schramm CM, Zucker AR. Chronic inhaled corticosteroids do not affect the course of acute severe asthma exacerbations in children. Pediatr Pulmonol. 2006;41(12):1213–1217. https://doi.org/10.1002/ppul.20521

176. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–725. https://doi.org/10.1038/nm.2678

177. de Groot JC, Ten Brinke A, Bel EHD. Management of the patient with eosinophilic asthma: a new era begins. ERJ open Res. 2015;1(1):00024-2015. https://doi.org/10.1183/23120541.00024-2015

178. Stelmach I, Jerzynska J, Kuna P. A randomized, double-blind trial of the effect of glucocorticoid, antileukotriene and b beta-agonist treatment on IL-10 serum levels in children with asthma. Clin Exp Allergy. 2002;32(2):264–269. https://doi.org/10.1046/j.1365-2222.2002.01286.x

179. Taylor IK, O’Shaughnessy KM, Fuller RW, Dollery C. Effect of cysteinyl-leukotriene receptor antagonist ICI 204.219 on allergen-induced bronchoconstriction and airway hyperreactivity in atopic subjects. Lancet. 1991;337(8743):690–694. https://doi.org/10.1016/0140-6736(91)90277-V

180. Morina N, Boçari G, Iljazi A, Hyseini K, Halac G. Maximum time of the effect of antileukotriene–zileuton in treatment of patients with bronchial asthma. Acta Inform Med. 2016;24(1):16–19. https://doi.org/10.5455/aim.2016.24.16-19

181. Ibe BO, Portugal AM, Raj JU. Levalbuterol inhibits human airway smooth muscle cell proliferation: therapeutic implications in the management of asthma. Int Arch Allergy Immunol. 2006;139(3):225–236. https://doi.org/10.1159/000091168

182. Špadijer Mirković C, Perić A, Vukomanović Đurđević B, Vojvodić D. Effects of fluticasone furoate nasal spray on parameters of eosinophilic inflammation in patients with nasal polyposis and perennial allergic rhinitis. Ann Otol Rhinol Laryngol. 2017;126(8):573–580. https://doi.org/10.1177/0003489417713505

183. Peter Gruber, Hans Joachim Lach, Norbert Otterbeck, "Budesonide pellets with a controlled released pattern and process for producing the same." U.S. Patent US5932249, issued May, 1991.

184. Pui-Ho Yuen, Charles Eckhart, Teresa Etlinger, Nancy Levine. "Mometasone furoate monohydrate, process for making same and pharmaceutical compositions." U.S. Patent US6127353, issued April, 1988. https://doi.org/10.18578/BNF.213416560

185. Trescoli C, Ward MJ. Systemic activity of inhaled and swallowed beclomethasone dipropionate and the effect of different inhaler devices. Postgrad Med J. 1998;74(877):675–677. https://doi.org/10.1136/pgmj.74.877.675

186. Wilcox JB, Avery GS. Beclomethasone dipropionate corticosteroid inhaler. Drugs. 1973;6(2):84–93. https://doi.org/10.2165/00003495-197306020-00002

187. Mutch E, Nave R, McCracken N, Zech K, Williams FM. The role of esterases in the metabolism of ciclesonide to desisobutyryl-ciclesonide in human tissue. Biochem Pharmacol. 2007;73(10):1657–1664. https://doi.org/10.1016/j.bcp.2007.01.031

188. Castro-Rodriguez JA, Rodriguez-Martinez CE, Ducharme FM. Daily inhaled corticosteroids or montelukast for preschoolers with asthma or recurrent wheezing: a systematic review. Pediatr Pulmonol. 2018;53(12):1670–1677. https://doi.org/10.1002/ppul.24176

189. Piatti G. Effects of zafirlukast on bronchial asthma and allergic rhinitis. Pharmacol Res. 2003;47(6):541–547. https://doi.org/10.1016/S1043-6618(03)00017-3

190. FDA (https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020547s027lbl.pdf)

191. Wenzel SE, Kamada AK. Zileuton: The first 5-lipoxygenase inhibitor for the treatment of asthma. Ann Pharmacother. 1996;30(7–8):858–864. https://doi.org/10.1177/106002809603000725

192. FDA (https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/020471s011lbl.pdf)

193. Salpeter SR, Buckley NS, Ormiston TM, Salpeter EE. Meta-analysis: effect of long-acting beta-agonists on severe asthma exacerbations and asthma-related deaths. Ann Intern Med. 2006;144(12):904–912 [Epub 2006 Jun 5]. https://doi.org/10.7326/0003-4819-144-12-200606200-00126

194. Faulds D, Hollingshead LM, Goa KL. Formoterol. Drugs. 1991;42(1):115–137. https://doi.org/10.2165/00003495-199142010-00007

195. Cheer SM, Scott LJ. Formoterol. Am J Respir Med. 2002;1(4):285–300. https://doi.org/10.1007/BF03256622

196. Harrell AW, Siederer SK, Bal J, Patel NH, Young GC, Felgate CC, et al. Metabolism and disposition of vilanterol, a long-acting β2-adrenoceptor agonist for inhalation use in humans. Drug Metab Dispos. 2012;41(1):89–100. https://doi.org/10.1124/dmd.112.048603

197. Yano Y, Yoshida M, Hoshino S, Inoue K, Kida H, Yanagita M, et al. Anti-fibrotic effects of theophylline on lung fibroblasts. Biochem Biophys Res Commun. 2006;341(3):684–690. https://doi.org/10.1016/j.bbrc.2006.01.018

198. Morgan DJ, Paull JD, Richmond BH, Wilson-Evered E, Ziccone SP. Pharmacokinetics of intravenous and oral salbutamol and its sulphate conjugate. Br J Clin Pharmacol. 1986;22(5):587–593. https://doi.org/10.1111/j.1365-2125.1986.tb02939.x

199. Jacobson GA, Raidal S, Robson K, Narkowicz CK, Nichols DS, Haydn Walters E. Bronchopulmonary pharmacokinetics of (R)-salbutamol and (S)-salbutamol enantiomers in pulmonary epithelial lining fluid and lung tissue of horses. Br J Clin Pharmacol. 2017;83(7):1436–1445. https://doi.org/10.1111/bcp.13228

200. Boulton DW, Fawcett JP. The pharmacokinetics of levosalbutamol. Clin Pharmacokinet. 2001;40(1):23–40. https://doi.org/10.2165/00003088-200140010-00003

201. Rehder KJ. Adjunct therapies for refractory status asthmaticus in children. Respir Care. 2017;62(6):849–865. https://doi.org/10.4187/respcare.05174

202. www.jiaci.org/issues/vol20s1/7.pdf

203. Yasir, M., Goyal, A., Bansal, P., & Sonthalia, S. (2020). Corticosteroid adverse effects. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan–. [PubMed: 30285357].

204. https://www.accessdata.fda.gov/drugsatfda_docs/anda/99/40287_Prednisolone_Prntlbl.pdf

205. Schwartz HJ, Blumenthal M, Brady R, Braun S, Lockey R, Myers D, et al. A comparative study of the clinical efficacy of nedocromil sodium and placebo. Chest. 1996;109(4):945–952. https://doi.org/10.1378/chest.109.4.945

206. Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol. 2005;115(3):459–465. https://doi.org/10.1016/j.jaci.2004.11.053

207. Garrett JK, Jameson SC, Thomson B, Collins MH, Wagoner LE, Freese DK, et al. Anti–interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes. J Allergy Clin Immunol. 2004;113(1):115–119. https://doi.org/10.1016/j.jaci.2003.10.049

208. FDA (https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125526Orig1s000Lbl.pdf)

209. Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels. Chest. 2016;150(4):789–798. https://doi.org/10.1016/j.chest.2016.03.032

210. Ghazi A, Trikha A, Calhoun WJ. Benralizumab – a humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity – a novel approach for the treatment of asthma. Expert Opin Biol Ther. 2012;12(1):113–118. https://doi.org/10.1517/14712598.2012.642359

211. Koopmans JG, Lutter R, Jansen HM, van der Zee JS. Adding salmeterol to an inhaled corticosteroid reduces allergen-induced serum IL-5 and peripheral blood eosinophils. J Allergy Clin Immunol. 2005;116(5):1007–1013. https://doi.org/10.1016/j.jaci.2005.08.016

212. Williams DM, Rubin BK. Clinical pharmacology of bronchodilator medications. Respir Care. 2018;63(6):641–654. https://doi.org/10.4187/respcare.06051

213. Powell C, Milan SJ, Dwan K, Bax L, Walters N. Mepolizumab versus placebo for asthma. Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd; 2015. https://doi.org/10.1002/14651858.CD010834.pub2

214. Pham T-H, Damera G, Newbold P, Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir Med. 2016;111:21–29. https://doi.org/10.1016/j.rmed.2016.01.003

215. Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2115–2127. https://doi.org/10.1016/S0140-6736(16)31324-1

216. Nixon J, Newbold P, Mustelin T, Anderson GP, Kolbeck R. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation. Pharmacol Ther. 2017;169:57–77. https://doi.org/10.1016/j.pharmthera.2016.10.016

217. Murphy S, Kelly HW. Cromolyn sodium: a review of mechanisms and clinical use in asthma. Drug Intell Clin Pharm. 1987;21(1):22–35. https://doi.org/10.1177/10600280870211P102

218. Viscardi RM, Hasday JD, Gumpper KF, Taciak V, Campbell AB, Palmer TW. Cromolyn sodium prophylaxis inhibits pulmonary proinflammatory cytokines in infants at high risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1997;156(5):1523–1529. https://doi.org/10.1164/ajrccm.156.5.9611088

219. Theoharides T, Sieghart W, Greengard P, Douglas W. Antiallergic drug cromolyn may inhibit histamine secretion by regulating phosphorylation of a mast cell protein. Science. 1980; 207(4426):80–82. https://doi.org/10.1126/science.6153130

220. Kay AB, Walsh GM, Moqbel R, MacDonald AJ, Nagakura T, Carroll MP, et al. Disodium cromoglycate inhibits activation of human inflammatory cells in vitro. J Allergy Clin Immunol. 1987;80(1):1–8. https://doi.org/10.1016/S0091-6749(87)80183-5

221. Oka T, Kalesnikoff J, Starkl P, Tsai M, Galli SJ. Evidence questioning cromolyn’s effectiveness and selectivity as a “mast cell stabilizer” in mice. Lab Invest. 2012;92(10):1472–1482. https://doi.org/10.1038/labinvest.2012.116

222. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184:1125–1113. https://doi.org/10.1164/rccm.201103-0396OC

223. Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine. 2015;75(1):68–78. https://doi.org/10.1016/j.cyto.2015.05.014