Effect of miR-1 and miR-126-5p in BCL2 and PIK3R2 regulation in apoptotic signaling during ST-elevation myocardial infarction
Main Article Content
Keywords
coronary artery disease, myocardial infarction, ST-elevation myocardial infarction, cardiac troponin T, BCL2, PIK3R2, miR-126-5p
Abstract
ST-elevation myocardial infarction (STEMI) involves the complete blockage of a coronary artery, leading to severe cardiac damage and high mortality. miR-1 promotes cardiomyocyte apoptosis by downregulating the anti-apoptotic protein BCL2, while miR-126-5p negatively regulates PIK3R2 by activating the PI3K/Akt pathway. The expression of these miRNAs correlates with BCL2, PIK3R2, and high-sensitivity cardiac troponin T (hs-cTnT) in patients and controls, highlighting their role in apoptosis and myocardial injury. This study aimed to compare serum levels of miR-1, BCL2, microRNA-126-5p (miR-126-5p), Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2), and cTnT in patients and controls. The association of miR-1 with BCL2 and miR-126-5p with PIK3R2 in STEMI patients was analyzed using ELISA and statistical analysis. Results showed a substantial increase in BCL2 levels in STEMI patients (128.01 ± 137.19) compared to controls (40.65 ± 20.92), and a decrease in miR-1 levels in STEMI patients (31.35 ± 68.89) compared to controls (43.43 ± 31.28). Similarly, the PIK3R2 and miR-126-5p levels among cases and controls were 228.55 ± 127.4 and 0.17 ± 0.32, respectively, showing a significant difference between patients and controls. Statistical analysis revealed that the expression levels of miR-1 and miR-126-5p are significantly different between controls and patients (p-value < 0.05), demonstrating a strong association with the prognosis of ST-elevation myocardial infarction. Moreover, a strong correlation was observed between BCL2 levels and PIK3R2 levels (p-value < 0.05) among STEMI patients. These results establish a profound diagnostic profile for STEMI using miR-1 and miR-126-5p and highlight the functional importance of these miRNAs in angiogenesis by targeting the BCL2 and PIK3R2 proteins.
References
2 Xue S, Liu D, Zhu W, Su Z, Zhang L, Zhou C, et al. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction. Front. 2019;10:123. 10.3389/fphys.2019.00123
3 Danese E, Montagnana MJAotm. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann Transl Med. 2016;4(10):194. 10.21037/atm.2016.05.19
4 Tanase DM, Gosav EM, Ouatu A, Badescu MC, Dima N, Ganceanu-Rusu AR, et al. Current knowledge of MicroRNAs (miRNAs) in acute coronary syndrome (ACS): ST-elevation myocardial infarction (STEMI). Life. 2021;11(10):1057. 10.3390/life11101057
5 Amezcua-Guerra B, Amezcua-Castillo LM, Guerra-López JA, Díaz-Domínguez KA, Sánchez-Gloria JL, Cruz-Melendez A, et al. Diagnostic performance of serum MicroRNAs for ST-segment elevation myocardial infarction in the emergency department. Biomedicines. 2023;11(9):2422. 10.3390/biomedicines11092422
6 Christenson E, Christenson RH. The role of cardiac biomarkers in the diagnosis and management of patients presenting with suspected acute coronary syndrome. Ann Lab Med. 2013 Aug 8;33(5):309. 10.3343/alm.2013.33.5.309
7 Fan Y, Chen Y, Wan Z, Zhou D, Ma AJJoCM. The prognostic value of autoantibodies against β1-adrenoceptor and cardiac troponin-I for clinical outcomes in STEMI. JCM. 2017;18(1): 34-41. 10.2459/JCM.0000000000000273
8 Kazimierczyk E, Eljaszewicz A, Kazimierczyk R, Tynecka M, Zembko P, Tarasiuk E, et al. Altered microRNA dynamics in acute coronary syndrome. Adv Interv Cardiol. 2020;16(3):287-93. 10.5114/aic.2020.99263
9 Kura B, Kalocayova B, Devaux Y, Bartekova MJIjoms. Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection. Int J Mol Sci. 2020;21(3):700. 10.3390/ijms21030700
10 Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang GJIhj. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J. 2009;50(3):377-87. 10.1536/ihj.50.377
11 Korshunova AY, Blagonravov ML, Neborak EV, Syatkin SP, Sklifasovskaya AP, Semyatov SM, et al. BCL2-regulated apoptotic process in myocardial ischemia-reperfusion injury. IJMM. 2021;47(1):23-36. 10.3892/ijmm.2020.4781
12 Wang L, Yuan Y, Li J, Ren H, Cai Q, Chen X, et al. MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network. Cell Stress Chaperones. 2015;20(3):411-20. 10.1007/s12192-014-0565-9
13 Wang X, Zhang X, Ren X-P, Chen J, Liu H, Yang J, et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation. 2010;122(13):1308-18. 10.1161/CIRCULATIONAHA.110.964684
14 Creemers EE, Tijsen AJ, Pinto YMJCr. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease. Circ Res. 2012;110(3):483-95. 10.1161/CIRCRESAHA.111.247452
15 Sharma AK, Bisht P, Gupta B, Akhtar MS, Alavudeen SS, Afzal O, et al. Investigating miRNA subfamilies: can they assist in the early diagnosis of acute myocardial infarction. Drug Discov Today. 2023;28(10):103695. 10.1016/j.drudis.2023.103695
16 Zhang X, Yang Y, Li Y, Zhang W, Song XJDO. miR-126-5p suppresses HeLa and Ishikawa cell proliferation and migration via the RICTOR/AKT pathway. Discov Oncol. 2025;16(1):533. 10.1007/s12672-025-02306-8
17 Tang X, Chen Y, Luo H, Bian Q, Weng B, Yang A, et al. miR-126 controls the apoptosis and proliferation of immature porcine sertoli cells by targeting the pik3r2 gene through the PI3K/AKT signaling pathway. Animals. 2021;11(8):2260. 10.3390/ani11082260
18 Walkowski B, Kleibert M, Majka M, Wojciechowska MJC. Insight into the role of the PI3K/Akt pathway in ischemic injury and post-infarct left ventricular remodeling in normal and diabetic heart. Cells. 2022;11(9):1553. 10.3390/cells11091553
19 Han B, Chu C, Su X, Zhang N, Zhou L, Zhang M, et al. N6-methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon black particles in rats. Nanotoxicology. 2020;14(1):1-20. 10.1080/17435390.2019.1661041
20 Xiaoyu L, Wei Z, Ming Z, Guowei JJCT. Anti-apoptotic effect of MiR-223-3p Suppressing PIK3C2A in cardiomyocytes from myocardial infarction rat through regulating PI3K/Akt signaling pathway. Cardiovasc Toxicol. 2021;21(8):669-82. 10.1007/s12012-021-09658-x
21 Laura Francés J, Pagiatakis C, Di Mauro V, Climent MJB. Therapeutic potential of EVs: targeting cardiovascular diseases. Biomed. 2023;11(7):1907. 10.3390/biomedicines11071907
22 Qu M-J, Pan J-J, Shi X-J, Zhang Z-J, Tang Y-H, Yang G-YJNN. MicroRNA-126 is a prospective target for vascular. Neurol Neuroimmunol Neuroinflamm. 2018;5:1-7. 10.20517/2347-8659.2018.01
23 Li S-N, Li P, Liu W-H, Shang J-J, Qiu S-L, Zhou M-X, et al. Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway. Biomed Pharmacother. 2019;120:109538. 10.1016/j.biopha.2019.109538
24 Neri M, Fabbri M, D’Errico S, Di Paolo M, Frati P, Gaudio RM, et al. Regulation of miRNAs as new tool for cutaneous vitality lesions demonstration in ligature marks in deaths by hanging. Sci Rep. 2019;9(1):20011. 10.1038/s41598-019-56682-7
25 Jin X, Awale M, Zasso M, Kostro D, Patiny L, Reymond J-LJBb. PDB-Explorer: a web-based interactive map of the protein data bank in shape space. BMC bioinformatics. 2015;16(1):339. 10.1186/s12859-015-0776-9
26 Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JMJPs. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018;27(1):129-34. 10.1002/pro.3289
27 Singh RP, Singh RN, Srivastava AK, Kumar S, Dubey R, Arora DKJJoASiES. Structural analysis and 3d-modelling of fur protein from bradyrhizobium japonicum. J. Appl Sci Environ Sanit. 2011;6(3).
28 Yan Y, Zhang D, Zhou P, Li B, Huang S-YJNar. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. NAR. 2017;45(W1):W365-W73. 10.1093/nar/gkx407
29 Yuan S, Chan HS, Hu ZJWIRCMS. Using PyMOL as a platform for computational drug design. Comput mol sci. 2017;7(2):e1298. 10.1002/wcms.1298
30 Schake P, Bolz SN, Linnemann K, Schroeder MJNAR. PLIP 2025: introducing protein–protein interactions to the protein–ligand interaction profiler. NAR. 2025:gkaf361. 10.1093/nar/gkaf361
31 Creighton CJ, Nagaraja AK, Hanash SM, Matzuk MM, Gunaratne PHJR. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA. 2008;14(11):2290-6. 10.1261/rna.1188208
32 Lu S-J, Ma M-Y, Yan X-G, Zhao F-J, Hu W-Y, Ding Q-W, et al. Development and application of a low-priced duplex quantitative PCR assay based on SYBR Green I for the simultaneous detection of porcine deltacoronavirus and porcine sapelovirus. Vet Med. 2023;68(3):106. 10.17221/79/2022-VETMED
33 Sial AH, Rashdi SYS, Khan AHJIJ. Comparative analysis of data visualization libraries Matplotlib and Seaborn in Python. IJATCSE. 2021;10(1):277-81. 10.30534/ijatcse/2021/391012021
34 McKinney W. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython: O’Reilly Media, Inc.; 2012. 385.
35 Hill C, Du L, Johnson M, McCullough BJWIRDM, Discovery K. Comparing programming languages for data analytics: Accuracy of estimation in Python and R. WIREs. 2024;14(3):e1531. 10.1002/widm.1531
36 Sun H, Cai J, Xu L, Liu J, Chen M, Zheng M, et al. Expression of miR-21 is involved in myocardial infarction through the IL-6/STAT3 and Bcl-2/caspase-3 pathway. IJCEP. 2016;9:2795-802.
37 Boeddinghaus J, Reichlin T, Nestelberger T, Twerenbold R, Meili Y, Wildi K, et al. Early diagnosis of acute myocardial infarction in patients with mild elevations of cardiac troponin. Clin Res Cardiol. 2017;106(6):457-67. 10.1007/s00392-016-1075-9
38 Mi X-l, Gao Y-p, Hao D-j, Zhang Z-j, Xu Z, Li T, et al. Prognostic value of circulating microRNA-21-5p and microRNA-126 in patients with acute myocardial infarction and infarct-related artery total occlusion. Front cardiovasc med. 2022;9:947721. 10.3389/fcvm.2022.947721
39 Wu Q, Qi B, Duan X, Ming X, Yan F, He Y, et al. MicroRNA-126 enhances the biological function of endothelial progenitor cells under oxidative stress via PI3K/Akt/GSK3β and ERK1/2 signaling pathways. BJBMS. 2021;21(1):71. 10.17305/bjbms.2019.4493
40 Zhang M, Hamblin MH, Yin K-JJNi. Long non-coding RNAs mediate cerebral vascular pathologies after CNS injuries. Neurochem Int. 2021;148:105102. 10.1016/j.neuint.2021.105102