Amygdalin attenuates interleukin-1β-stimulated chondrocyte damage in mice through the Nrf2/NF-κB pathway
Main Article Content
Keywords
amygdalin, chondrocyte damage, Nrf2/NF-κB pathway, osteoarthritis
Abstract
Background: Osteoarthritis (OA) is the most usual joint disease, which affects the life of patients and causes them seriously physical pain. Amygdalin, the main active pharmaceutical ingredient in Semen Armeniacae Amarum, has anti-inflammatory, anti-oxidation, and immunomodulatory impacts. However, the regulatory functions of Amygdalin in OA progression keep indistinct and need further investigations. This study is aimed to probe the regulatory influences and associated pathways of Amygdalin in OA development.
Methods: The cell viability was confirmed through CCK-8 assay. The levels of PGE2, TNF-α and IL-6 were detected through ELISA. The ROS level was examined through DCF staining. The levels of MDA, SOD and GSH were measured through the commercial kit. The protein expressions were evaluated through western blot.
Results: Firstly, it was demonstrated that Amygdalin can refrain IL-1β-evoked inflammation in chondrocytes. Next, Amygdalin repressed IL-1β-triggered oxidative stress in chondrocytes. Moreover, Amygdalin inhibited IL-1β-mediated ECM degradation in chondrocytes. Lastly, it was revealed that Amygdalin accelerated the Nrf2 pathway and suppressed the NF-κB pathway.
Conclusion: Amygdalin attenuated IL-1β-stimulated chondrocyte damage through the Nrf2/NF-κB pathway, thereby ameliorating OA progression. This finding hinted that Amygdalin may be one promising drug for OA treatment.
References
2 Courties A, Kouki I, Soliman N, Mathieu S, Sellam J. Osteoarthritis year in review 2024: Epidemiology and therapy. Osteoarthritis Cartilage. 2024;32(11):1397–404. 10.1016/j.joca.2024.07.014
3 Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, et al. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):56. 10.1038/s41392-023-01330-w
4 Yunus MHM, Nordin A, Kamal H. Pathophysiological perspective of osteoarthritis. Medicina (Kaunas). 2020;56(11):614. 10.3390/medicina56110614
5 Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA. 2021;325(6):568–78. 10.1001/jama.2020.22171
6 He XY, Wu LJ, Wang WX, Xie PJ, Chen YH, Wang F. Amygdalin–A pharmacological and toxicological review. J Ethnopharmacol. 2020;254:112717. 10.1016/j.jep.2020.112717
7 Wang Z, Du H, Wan H, Yang J, Wan H. Amygdalin prevents multidrug-resistant Staphylococcus aureus-induced lung epithelial cell injury by regulating inflammation and oxidative stress. PLoS One. 2024;19(9):e0310253. 10.1371/journal.pone.0310253
8 Zeng Q, Sun Q, Xu H, Chen J, Ling H, Ge Q, et al. Amygdalin delays cartilage endplate degeneration and improves intervertebral disc degeneration by inhibiting NF-κB signaling pathway and inflammatory response. J Inflamm Res. 2023;16:3455–68. 10.2147/JIR.S415527
9 He X, Liu J, Gong Y, Lu W, Sha X, Cao C, et al. Amygdalin ameliorates alopecia areata on C3H/HeJ mice by inhibiting inflammation through JAK2/STAT3 pathway. J Ethnopharmacol. 2024;331:118317. 10.1016/j.jep.2024.118317
10 Li S, Lu S, Wang L, Liu S, Zhang L, Du J, et al. Effects of amygdalin on ferroptosis and oxidative stress in diabetic retinopathy progression via the NRF2/ARE signaling pathway. Exp Eye Res. 2023;234:109569. 10.1016/j.exer.2023.109569
11 Trang NM, Kim EN, Lee HS, Jeong GS. Effect on osteoclast differentiation and ER stress downregulation by amygdalin and RANKL binding interaction. Biomolecules. 2022;12(2):256. 10.3390/biom12020256
12 Xie W, Qi S, Dou L, Wang L, Wang X, Bi R, et al. Achyranthoside D attenuates chondrocyte loss and inflammation in osteoarthritis via targeted regulation of Wnt3a. Phytomedicine. 2023;111:154663. 10.1016/j.phymed.2023.154663
13 Shen Y, Teng L, Qu Y, Huang Y, Peng Y, Tang M, et al. Hederagenin suppresses inflammation and cartilage degradation to ameliorate the progression of osteoarthritis: An in vivo and in vitro study. Inflammation. 2023;46(2):655–78. 10.1007/s10753-022-01763-5
14 Madzuki IN, Lau SF, Che Ahmad Tantowi NA, Mohd Ishak NI, Mohamed S. Labisia pumila prevented osteoarthritis cartilage degeneration by attenuating joint inflammation and collagen breakdown in postmenopausal rat model. Inflammopharmacology. 2018;26(5):1207–17. 10.1007/s10787-018-0452-6
15 Li X, Mei W, Huang Z, Zhang L, Zhang L, Xu B, et al. Casticin suppresses monoiodoacetic acid-induced knee osteoarthritis through inhibiting HIF-1α/NLRP3 inflammasome signaling. Int Immunopharmacol. 2020;86:106745. 10.1016/j.intimp.2020.106745
16 Zhang S, Wang L, Kang Y, Wu J, Zhang Z. Nanomaterial-based reactive oxygen species scavengers for osteoarthritis therapy. Acta Biomater. 2023;162:1–19. 10.1016/j.actbio.2023.06.012
17 Rapp AE, Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am J Physiol Cell Physiol. 2023;324(2):C377–94. 10.1152/ajpcell.00464.2022
18 Ma T, Ma Y, Yu Y, Jia L, Lv L, Song X, et al. Emodin attenuates the ECM degradation and oxidative stress of chondrocytes through the Nrf2/NQO1/HO-1 pathway to ameliorate rat osteoarthritis. Oxid Med Cell Longev. 2022;2022:5581346. 10.1155/2022/5581346
19 Pang Z, Jiang Z, Zhu R, Song C, Tang H, Cao L, et al. Bardoxolone-methyl prevents oxidative stress-mediated apoptosis and extracellular matrix degradation in vitro and alleviates osteoarthritis in vivo. Drug Des Devel Ther. 2021;15:3735–47. 10.2147/DDDT.S314767
20 Lu H, Jia C, Wu D, Jin H, Lin Z, Pan J, et al. Fibroblast growth factor 21 (FGF21) alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway. Cell Death Dis. 2021;12(10):865. 10.1038/s41419-021-04157-x
21 Li Y, Shen B, Lv C, Zhu X, Naren Q, Xu D, et al. Methyl gallate prevents oxidative stress induced apoptosis and ECM degradation in chondrocytes via restoring Sirt3 mediated autophagy and ameliorates osteoarthritis progression. Int Immunopharmacol. 2023;114:109489. 10.1016/j.intimp.2022.109489
22 Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016;1862(4):576–91. 10.1016/j.bbadis.2016.01.003
23 He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21(13):4777. 10.3390/ijms21134777
24 Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–47. 10.1007/s00018-016-2223-0
25 Ferrándiz ML, Nacher-Juan J, Alcaraz MJ. Nrf2 as a therapeutic target for rheumatic diseases. Biochem Pharmacol. 2018;152:338–46. 10.1016/j.bcp.2018.04.010
26 Zhang Z, Wang S, Liu X, Yang Y, Zhang Y, Li B, et al. Secoisolariciresinol diglucoside ameliorates osteoarthritis via nuclear factor-erythroid 2-related factor-2/nuclear factor kappa B pathway: In vitro and in vivo experiments. Biomed Pharmacother. 2023;164:114964. 10.1016/j.biopha.2023.114964