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beas-2b; Background: CXCL3 (C-X-C motif chemokine ligand 3) is a member of chemokines family, which
cxcl3; binds to the receptor to recruit neutrophils to lungs, thus participating in the pathogenesis
hpaec; of asthmatic lung. The role of CXCL3 in sepsis-induced acute lung injury is investigated here.
inflammation; Methods: Human lung epithelial cell line (BEAS-2B) and human pulmonary artery endothelial
lipopolysaccharide; cell line (HPAEC) were treated with lipopolysaccharides (LPS). MTT and flow cytometry were
mapks; performed to detect cell viability and apoptosis, respectively. Enzyme-linked immunosorbent
sepsis assay (ELISA) and real-time quantitative reverse transcription polymerase chain reaction (qRT-

PCR) were used to assess the levels of inflammatory factors.

Results: Treatment with LPS resulted in the decrease of cell viability in BEAS-2B and HPAEC.
CXCL3 was particularly upregulated in LPS-treated BEAS-2B and HPAE cells. Knockdown of
CXCL3 enhanced viability and suppressed apoptosis i006E LPS-treated BEAS-2B and HPAE cells.
Knockdown of CXCL3 also upregulated TNF-a, IL-18, and IL-18 in LPS-treated BEAS-2B and HPAE
cells. Moreover, knockdown of CXCL3 suppressed the activation of mitogen-activated protein
kinases (MAPKs) signaling in LPS-treated BEAS-2B and HPAE cells through downregulation of
p-ERK1/2, p-p38, and p-JNK. On the other hand, overexpression of CXCL3 caused completely
opposite results in LPS-treated BEAS-2B and HPAE cells.

Conclusion: Knockdown of CXCL3 exerted antiapoptotic and anti-inflammatory effects against
LPS-treated BEAS-2B and HPAE cells, at least partially, through inactivation of MAPKs signaling,
suggesting a potential strategy for the intervention of sepsis-induced acute lung injury.
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Introduction

Sepsis, a systemic pathophysiological and biochemical dis-
order, is caused by severe bacterial, viral, parasitic, or
fungal infection.! Sepsis, as an inflammatory response syn-
drome, stimulates multiple organ failure.? Sepsis and the
related diseases contribute to approximately 20% of all
deaths globally.? Lung is one of the most susceptible organs
to sepsis, and sepsis-induced acute lung injury is a common
complication that accounts for high morbidity and mortal-
ity.* However, effective therapies for sepsis-induced acute
lung injury are currently devoid.

Lipopolysaccharide (LPS), an endotoxin found in cell
wall of gram-negative bacteria, has been reported to
induce excessive immune response in lungs and contribute
to the pathogenesis of sepsis-induced acute lung injury.’
Amelioration of LPS-induced inflammation attenuated
sepsis-associated acute lung injury.® TAK-242 functioned as
an inhibitor of TLR4, and eritoran antagonized the bind-
ing of LPS to TLR4, thus blocking gram-negative bacte-
rial infection-induced inflammatory responses in sepsis.’®
However, clinical trials showed that antagonists of TLR4,
TAK-242, and eritoran tetrasodium showed no optimistic
results in septic patients.”" Therefore, other mechanisms
involved in inflammation of sepsis-induced acute lung
injury should be investigated.

Chemokines play a key role in innate and adaptive
immunity through regulation in the polarization of CD4+
T cells, cell activation, microbicidal activity, and cell
recruitment.” Production of chemokines and inflammatory
cytokines are involved in the pathogenesis of sepsis-asso-
ciated acute lung injury.”® For example, CXC chemokine
ligand 1 (CXCL1) regulated neutrophil migration and Th17
differentiation to facilitate the host defense in polymicro-
bial sepsis.”* CXCL3 is a member of chemokine family that
mediates vascular remodeling and mobilization and traf-
ficking of fibrocytes during the development of pulmonary
fibrosis.” CXCL3 also functions as a ligand for CXC chemo-
kine receptor 2 (CXCR2), and CXCL3/CXCR2 axis regulates
the infiltration of neutrophils to the inflammatory sites,
and is therefore associated with inflammatory diseases.'
CXCL3 recruited CXCR2-positive neutrophils to promote
rhinoviral-induced inflammation during the development of
asthma exacerbation."” Moreover, CXCL3 was found to be a
differentially expressed gene in mechanical ventilation and
LPS-induced mice with acute lung injury.”® However, the
role of CXCL3 in sepsis-associated acute lung injury has not
been reported yet.

In this study, the effects of CXCL3 on cell apoptosis and
inflammation of LPS-treated human lung epithelial cell line
(BEAS-2B) and human pulmonary artery endothelial cell
line (HPAEC) were investigated, and the related mechanism
was revealed. This study might provide potential strategy
for the prevention of sepsis-associated acute lung injury.

Materials and Methods
Cell culture and treatment

BEAS-2B and HPAE cells were cultured in Dulbecco’s
Modified Eagle’s Medium (Sigma-Aldrich, St. Louis, MO,

USA) containing 10% fetal bovine serum (Thermo Fisher
Scientific, Waltham, MA, USA). Cells were incubated with
1, 5, or 10 ug/mL LPS (Sigma-Aldrich) for 24 h before the
functional assays.

Cell viability and apoptosis assays

Full length of CXCL3 was subcloned into pcDNA-3.1 vec-
tor (Invitrogen, Carlsbad, CA, USA) to generate pc-CXCL3.
siRNA targeting CXCL3 (siCXCL3) was synthesized by
GenePharma (Suzhou, China). BEAS-2B and HPAE cells were
seeded into a 96-well plate and grown in 5 ug/mL LPS for
24 h after transfection with 200 ug pcDNAs (pc-CXCL3 or
NC) or 20 nM siRNAs (siCXCL3 or siNC). Cells were then
treated with MTT solution (Beyotime, Beijing, China) for
4 h. The supernatant was removed, and formazan was dis-
solved with dimethyl sulfoxide (Sigma-Aldrich). Absorbance
at 570 nm was measured using microplate reader (Thermo
Fisher Scientific) to detect cell viability. For flow cytom-
etry, LPS-treated (5 ug/mL) BEAS-2B and HPAE cell lines
were transfected with pcDNAs or siRNAs. Cells were sub-
jected to trypsin digestion, and then resuspended in
binding buffer of BD Cycletest™ Plus DNA Reagent Kit (BD
Biosciences, San Jose, CA). Cells were stained with 5 uL
fluorescein isothiocyanate-conjugated annexin V and 5 ulL
propidium oxide (1 mg/mL), and then analyzed under fluo-
rescence activated cell sorting (FACS) flow cytometer (Life
Technologies, Darmstadt, Germany).

gqRT-PCR and ELISA

BEAS-2B and HPAE cells were lysed in TRIzol kit (Invitrogen,
Carlsbad, CA, USA), and the isolated RNAs were synthe-
sized into cDNAs using Multiscribe™ Reverse transcription
Kit (Applied Biosystems, CA, USA). The mRNA expression of
TNF-«, IL-18, and IL-18 were detected by PreTaq Il kit
(Takara, Dalian, Liaoning, China) with the following prim-
ers: TNF-a (Forward: 5-ATGGGCTCCCTCTCATCAGT-3’ and
Reverse: 5-GCTTGGTGGTTTGCTACGAC-3’); IL-18 (Forward:
5-ATGAGGACCCAAGCACCTTC-3’ and Reverse: 5-ACCACTT
GTTGGCTTATGTTCTG-3’); IL-18 (Forward: 5-AAAGTGCCA
GTGAACCC-3’ and Reverse: 5-TTTGATGTAAGTTAGTGAGA
GTGA-3’). B-actin (Forward: 5 TACTGCCCTGGCTCCTAGCA-3’
and Reverse: 5-TGGACAGTGAGGCCAGGATAG-3’) was used
as the internal control. For ELISA, the cultured medium of
BEAS-2B and HPAE cells were harvested, and then sub-
jected to the commercial ELISA kits (Thermo Fisher
Scientific) to detect levels of TNF-«, IL-183, and IL-18.

Western blot

BEAS-2B and HPAE cells were lysed in Radioimmunoprecipitation
assay (RIPA) buffer (Beyotime), and the isolated proteins were
then separated by 10% SDS-PAGE. Proteins were transferred
onto nitrocellulose membranes, and the membranes were
blocked in 5% bovine serum albumin. Membranes were then
probed with specific antibodies: anti-CXCL3 and anti-B-actin
(1:2000), anti-GAPDH (1:2500), anti-p-ERK1/2 and anti-ERK1/2
(1:3000), anti-p-JNK and anti-JNK (1:3500), anti-p-p38 and
anti-p38 (1:4000). The membranes were then washed and
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incubated with horseradish peroxidase-conjugated secondary
antibody (1:5000). Immunoreactivities were visualized using
enhanced chemiluminescence (Sigma-Aldrich). All the anti-
bodies were acquired from Abcam (Cambridge, MA, USA).

Statistical analysis

All data with at least triple replicates were expressed as
mean + SEM and analyzed by Student’s t-test or one-way
analysis of variance under SPSS software. P < 0.05 was con-
sidered as statistically significant.

Results

LPS caused the upregulation of CXCL3 in LPS-treated
BEAS-2B and HPAE cells to induce cytotoxicity. The viabil-
ity of BEAS-2B and HPAE cells were reduced by LPS in a
dose-dependent manner (Figure 1A). Protein expression of
CXCL3 in BEAS-2B and HPAE cells was enhanced by LPS in
a dose-dependent manner (Figure 1B), which suggested the
potential functional role of CXCL3 in LPS-treated BEAS-2B
and HPAE cells.

Knockdown of CXCL3 inhibited the apoptosis of
LPS-treated BEAS-2B and HPAEC

LPS-treated BEAS-2B and HPAE cell lines were then sub-
jected to gain- and loss- of functional assays through trans-
fection with pcDNAs and siRNAs, respectively. Transfection
with pc-CXCL3 or siCXCL3 increased or decreased the
protein expression of CXCL3 in BEAS-2B and HPAE cells,

respectively (Figure 2A). Overexpression of CXCL3 reduced
the viabilities, while knockdown of CXCL3 enhanced the
viabilities in LPS-treated BEAS-2B and HPAE cell lines
(Figure 2B). Moreover, apoptosis of LPS-treated BEAS-2B
and HPAEC was promoted by overexpression of CXCL3,
while the process was inhibited by knockdown of CXCL3
(Figures 2C and 2D), demonstrating the antiapoptotic
effect of CXCL3 silence against LPS-treated BEAS-2B and
HPAEC cells.

Knockdown of CXCL3 inhibited the inflammation
of LPS-treated BEAS-2B and HPAE cell lines

LPS induced the upregulation of TNF-a, IL-183, and IL-18 in
BEAS-2B and HPAE cells (Figures 3A and 3B). Overexpression
of CXCL3 upregulated the levels of TNF-«, IL-18, and IL-18,
while knockdown of CXCL3 downregulated the levels of
these cytokines in LPS-treated BEAS-2B and HPAE cells
(Figures 3A and 3B), exerting the anti-inflammatory effect
of CXCL3 silence against LPS-treated BEAS-2B and HPAE
cells.

Knockdown of CXCL3-inhibited MAPKs signaling in
LPS-treated BEAS-2B and HPAE cell lines

The protein expressions of p-ERK1/2, p-p38, and p-JNK in
BEAS-2B and HPAE cells were increased by LPS (Figure 4).
Overexpression of CXCL3 promoted the activation, while
knockdown of CXCL3 suppressed the activation of MAPKs
signaling in LPS-treated BEAS-2B and HPAE cells through
upregulation and downregulation of p-ERK1/2, p-p38, and
p-JNK, respectively (Figure 4).
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Figure 1

Lipopolysaccharides caused the upregulation of CXCL3 in BEAS-2B and HPAE cells. (A) The viabilities of BEAS-2B and

HPAE cells were reduced by lipopolysaccharides in a dose-dependent manner. (B) The protein expression of CXCL3 in BEAS-2B and
HPAE cells was enhanced by lipopolysaccharides in a dose-dependent manner. *, **, *** P < 0.05, P < 0.01, P < 0.001. BEAS-2B,
human lung epithelial cells; CXCL3, C-X-C motif chemokine ligand 3; HPAEC, human pulmonary artery endothelial cells.
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Figure 2 Knockdown of CXCL3 inhibited the apoptosis of LPS-treated BEAS-2B and HPAE cell lines. (A) Transfection with pc-CXCL3
or siCXCL3 increased or decreased the protein expression of CXCL3 in BEAS-2B and HPAE cells, respectively. (B) Overexpression of
CXCL3 reduced the viabilities of LPS-treated BEAS-2B and HPAE cell lines, while knockdown of CXCL3 caused the opposite results.
(C) Overexpression of CXCL3 promoted the apoptosis of LPS-treated BEAS-2B and HPAE cell lines, while knockdown of CXCL3
caused the opposite results. (D) Relative apoptosis of LPS-treated BEAS-2B and HPAE cell lines after transfection of pc-CXCL3 or
siCXCL3, respectively. * ** *** P < 0.05, P < 0.01, P < 0.001. BEAS-2B, human lung epithelial cells; CXCL3, C-X-C motif chemokine

ligand 3; HPAEC, human pulmonary artery endothelial cells; LPS, lipopolysaccharides.

Discussion

Inflammatory characteristics of LPS-induced acute lung
injury in mice showed that CXCLs were primarily accumu-
lated in lung tissues.” LPS induced upregulation of CXCL4
and contributed to apoptosis and permeability of endo-
thelial cells.?’ Suppression of CXCL16/CXCRé6 axis reduced
LPS-induced acute lung injury.? Bioinformatic analysis has
shown that CXCL3 was a differentially expressed gene in
mechanical ventilation and LPS-induced mice with acute
lung injury, and might be regarded as a potential target
for the treatment of acute lung injury.” This is the first
evidence demonstrating the contribution of CXCL3 to LPS-
induced cytotoxicity and inflammation in BEAS-2B and

HPAE cells. Moreover, knockdown of CXCL3 reduced apop-
tosis and inflammation in LPS-treated BEAS-2B and HPAE
cell lines, thus ameliorating sepsis-associated acute lung
injury.

LPS caused the reduction of viability in BEAS-2B, pro-
moted the release of lactate dehydrogenase and induced
excessive accumulation of inflammatory factors, such as
TNF-a, IL-6, and TGF-p, thus contributing to the develop-
ment of acute lung injury.?? LPS also induced inflammatory
responses, endothelial injury, and accumulation of reac-
tive oxygen species in HPAEC.? Therefore, LPS-treated
BEAS-2B and HPAE cell lines are widely used as cell mod-
els for sepsis-associated acute lung injury. In this study,
BEAS-2B and HPAE cells were treated with LPS, which
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Figure 3 Knockdown of CXCL3 inhibited the inflammation of LPS-treated BEAS-2B and HPAE cell lines. (A) Overexpression of
CXCL3 upregulated the mRNA expressions of TNF-a, IL-1B, and IL-18, while knockdown of CXCL3 downregulated the levels of TNF-
a, IL-1B, and IL-18 in LPS-treated BEAS-2B and HPAE cells. (B) Overexpression of CXCL3 upregulated the protein expressions of
TNF-0, IL-1B, and IL-18, while knockdown of CXCL3 down-regulated the levels of TNF-q, IL-1f, and IL-18 in LPS-treated BEAS-2B and
HPAE cells. *, ** *** P < 0.05, P < 0.01, P < 0.001. BEAS-2B, human lung epithelial cells; CXCL3, C-X-C motif chemokine ligand 3;
HPAEC, human pulmonary artery endothelial cells; LPS, lipopolysaccharides.
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Figure 4 Knockdown of CXCL3 inhibited MAPKs signaling in LPS-treated BEAS-2B and HPAEC. Overexpression promoted the
upregulation of p-ERK1/2, p-p38, and p-JNK, while knockdown of CXCL3 reduced the levels of p-ERK1/2, p-p38, and p-JNK in LPS-
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induced cytotoxicity in the cells by cell viability reduc-
tion, increase in cell apoptosis, and upregulation of TNF-
a, IL-18, and IL-18.

A previous study has shown that CXCL3 was upreg-
ulated in lung tissues of mechanical ventilation and LPS-
induced mice.” Here, LPS also induced upregulation of
CXCL3 in BEAS-2B and HPAE cells. Functional assays showed
that knockdown of CXCL3 decreased viability, increased
apoptosis, and upregulated TNF-a, IL-13, and IL-18 in LPS-
treated BEAS-2B and HPAE cells. Therefore, knockdown of
CXCL3 might exert antiapoptotic and anti-inflammatory
effects against sepsis-associated acute lung injury, which
needs further investigation.

MAPKs signaling has been shown to be essential for dys-
regulated and overly aggressive inflammatory response in
the development of sepsis.?* MAPKs were abnormally acti-
vated in rats with sepsis-associated acute lung injury,?® and
inhibition in the phosphorylation of p38 and JNK in lung
tissues alleviated sepsis-associated acute lung injury.?
Activation of CXCLs/CXCR2 axis promoted the activation of
p38/ERK signaling to regulate cell survival and migration in
inflammatory diseases."® Moreover, CXCL3 activated MAPK/
ERK pathway to promote tumorigenesis of uterine cervical
cancer,? and inhibitions of ERK and JNK suppressed CXCL3-
induced adipogenic differentiation.?” This study indicated
that overexpression of CXCL3 enhanced the phosphoryla-
tion, while knockdown of CXCL3 reduced the phosphory-
lation of ERK1/2, p38, and JNK in BEAS-2B and HPAE cells.

In summary, CXCL3 promoted apoptosis and inflam-
mation, and caused upregulations of p-ERK1/2, p-p38,
and p-JNK, while knockdown of CXCL3 showed opposite
results in LPS-treated BEAS-2B and HPAE cells. CXCL3 might
be considered as a potential target for the treatment of
sepsis-associated acute lung injury. However, the effect
of CXCL3 on animal models of sepsis-associated acute lung
injury should be investigated in further research.
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