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Abstract
Background: CXCL3 (C-X-C motif chemokine ligand 3) is a member of chemokines family, which 
binds to the receptor to recruit neutrophils to lungs, thus participating in the pathogenesis 
of asthmatic lung. The role of CXCL3 in sepsis-induced acute lung injury is investigated here.
Methods: Human lung epithelial cell line (BEAS-2B) and human pulmonary artery endothelial 
cell line (HPAEC) were treated with lipopolysaccharides (LPS). MTT and flow cytometry were 
performed to detect cell viability and apoptosis, respectively. Enzyme-linked immunosorbent 
assay (ELISA) and real-time quantitative reverse transcription polymerase chain reaction (qRT-
PCR) were used to assess the levels of inflammatory factors.
Results: Treatment with LPS resulted in the decrease of cell viability in BEAS-2B and HPAEC. 
CXCL3 was particularly upregulated in LPS-treated BEAS-2B and HPAE cells. Knockdown of 
CXCL3 enhanced viability and suppressed apoptosis i006E LPS-treated BEAS-2B and HPAE cells. 
Knockdown of CXCL3 also upregulated TNF-α, IL-1β, and IL-18 in LPS-treated BEAS-2B and HPAE 
cells. Moreover, knockdown of CXCL3 suppressed the activation of mitogen-activated protein 
kinases (MAPKs) signaling in LPS-treated BEAS-2B and HPAE cells through downregulation of 
p-ERK1/2, p-p38, and p-JNK. On the other hand, overexpression of CXCL3 caused completely 
opposite results in LPS-treated BEAS-2B and HPAE cells.
Conclusion: Knockdown of CXCL3 exerted antiapoptotic and anti-inflammatory effects against 
LPS-treated BEAS-2B and HPAE cells, at least partially, through inactivation of MAPKs signaling, 
suggesting a potential strategy for the intervention of sepsis-induced acute lung injury.
© 2022 Codon Publications. Published by Codon Publications.
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USA) containing 10% fetal bovine serum (Thermo Fisher 
Scientific, Waltham, MA, USA). Cells were incubated with 
1, 5, or 10 μg/mL LPS (Sigma-Aldrich) for 24 h before the 
functional assays.

Cell viability and apoptosis assays

Full length of CXCL3 was subcloned into pcDNA-3.1 vec-
tor (Invitrogen, Carlsbad, CA, USA) to generate pc-CXCL3. 
siRNA targeting CXCL3 (siCXCL3) was synthesized by 
GenePharma (Suzhou, China). BEAS-2B and HPAE cells were 
seeded into a 96-well plate and grown in 5 μg/mL LPS for 
24 h after transfection with 200 μg pcDNAs (pc-CXCL3 or 
NC) or 20 nM siRNAs (siCXCL3 or siNC). Cells were then 
treated with MTT solution (Beyotime, Beijing, China) for 
4 h. The supernatant was removed, and formazan was dis-
solved with dimethyl sulfoxide (Sigma-Aldrich). Absorbance 
at 570 nm was measured using microplate reader (Thermo 
Fisher Scientific) to detect cell viability. For flow cytom-
etry, LPS-treated (5 μg/mL) BEAS-2B and HPAE cell lines 
were transfected with pcDNAs or siRNAs. Cells were sub-
jected to trypsin digestion, and then resuspended in 
binding buffer of BD CycletestTM Plus DNA Reagent Kit (BD 
Biosciences, San Jose, CA). Cells were stained with 5 μL 
fluorescein isothiocyanate–conjugated annexin V and 5 μL 
propidium oxide (1 mg/mL), and then analyzed under fluo-
rescence activated cell sorting (FACS) flow cytometer (Life 
Technologies, Darmstadt, Germany).

qRT-PCR and ELISA

BEAS-2B and HPAE cells were lysed in TRIzol kit (Invitrogen, 
Carlsbad, CA, USA), and the isolated RNAs were synthe-
sized into cDNAs using MultiscribeTM Reverse transcription 
Kit (Applied Biosystems, CA, USA). The mRNA expression of 
TNF-α, IL-1β, and IL-18 were detected by PreTaq II kit 
(Takara, Dalian, Liaoning, China) with the following prim-
ers: TNF-α (Forward: 5’-ATGGGCTCCCTCTCATCAGT-3’ and 
Reverse: 5’-GCTTGGTGGTTTGCTACGAC-3’); IL-1β (Forward: 
5’-ATGAGGACCCAAGCACCTTC-3’ and Reverse: 5’-ACCACTT 
GTTGGCTTATGTTCTG-3’); IL-18 (Forward: 5’-AAAGTGCCA 
GTGAACCC-3’ and Reverse: 5’-TTTGATGTAAGTTAGTGAGA 
GTGA-3’). β-actin (Forward: 5’-TACTGCCCTGGCTCCTAGCA-3’ 
and Reverse: 5’-TGGACAGTGAGGCCAGGATAG-3’) was used 
as the internal control. For ELISA, the cultured medium of 
BEAS-2B and HPAE cells were harvested, and then sub-
jected to the commercial ELISA kits (Thermo Fisher 
Scientific) to detect levels of TNF-α, IL-1β, and IL-18.

Western blot

BEAS-2B and HPAE cells were lysed in Radioimmunoprecipitation 
assay (RIPA) buffer (Beyotime), and the isolated proteins were 
then separated by 10% SDS-PAGE. Proteins were transferred 
onto nitrocellulose membranes, and the membranes were 
blocked in 5% bovine serum albumin. Membranes were then 
probed with specific antibodies: anti-CXCL3 and anti-β-actin 
(1:2000), anti-GAPDH (1:2500), anti-p-ERK1/2 and anti-ERK1/2 
(1:3000), anti-p-JNK and anti-JNK (1:3500), anti-p-p38 and 
anti-p38 (1:4000). The membranes were then washed and 

Introduction

Sepsis, a systemic pathophysiological and biochemical dis-
order, is caused by severe bacterial, viral, parasitic, or 
fungal infection.1 Sepsis, as an inflammatory response syn-
drome, stimulates multiple organ failure.2 Sepsis and the 
related diseases contribute to approximately 20% of all 
deaths globally.3 Lung is one of the most susceptible organs 
to sepsis, and sepsis-induced acute lung injury is a common 
complication that accounts for high morbidity and mortal-
ity.4 However, effective therapies for sepsis-induced acute 
lung injury are currently devoid.

Lipopolysaccharide (LPS), an endotoxin found in cell 
wall of gram-negative bacteria, has been reported to 
induce excessive immune response in lungs and contribute 
to the pathogenesis of sepsis-induced acute lung injury.5 
Amelioration of LPS-induced inflammation attenuated 
sepsis-associated acute lung injury.6 TAK-242 functioned as 
an inhibitor of TLR4, and eritoran antagonized the bind-
ing of LPS to TLR4, thus blocking gram-negative bacte-
rial infection–induced inflammatory responses in sepsis.7,8 
However, clinical trials showed that antagonists of TLR4, 
TAK-242, and eritoran tetrasodium showed no optimistic 
results in septic patients.9–11 Therefore, other mechanisms 
involved in inflammation of sepsis-induced acute lung 
injury should be investigated.

Chemokines play a key role in innate and adaptive 
immunity through regulation in the polarization of CD4+ 
T cells, cell activation, microbicidal activity, and cell 
recruitment.12 Production of chemokines and inflammatory 
cytokines are involved in the pathogenesis of sepsis-asso-
ciated acute lung injury.13 For example, CXC chemokine 
ligand 1 (CXCL1) regulated neutrophil migration and Th17 
differentiation to facilitate the host defense in polymicro-
bial sepsis.14 CXCL3 is a member of chemokine family that 
mediates vascular remodeling and mobilization and traf-
ficking of fibrocytes during the development of pulmonary 
fibrosis.15 CXCL3 also functions as a ligand for CXC chemo-
kine receptor 2 (CXCR2), and CXCL3/CXCR2 axis regulates 
the infiltration of neutrophils to the inflammatory sites, 
and is therefore associated with inflammatory diseases.16 
CXCL3 recruited CXCR2-positive neutrophils to promote 
rhinoviral-induced inflammation during the development of 
asthma exacerbation.17 Moreover, CXCL3 was found to be a 
differentially expressed gene in mechanical ventilation and 
LPS-induced mice with acute lung injury.18 However, the 
role of CXCL3 in sepsis-associated acute lung injury has not 
been reported yet.

In this study, the effects of CXCL3 on cell apoptosis and 
inflammation of LPS-treated human lung epithelial cell line 
(BEAS-2B) and human pulmonary artery endothelial cell 
line (HPAEC) were investigated, and the related mechanism 
was revealed. This study might provide potential strategy 
for the prevention of sepsis-associated acute lung injury.

Materials and Methods

Cell culture and treatment

BEAS-2B and HPAE cells were cultured in Dulbecco’s 
Modified Eagle’s Medium (Sigma-Aldrich, St. Louis, MO, 
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respectively (Figure 2A). Overexpression of CXCL3 reduced 
the viabilities, while knockdown of CXCL3 enhanced the 
viabilities in LPS-treated BEAS-2B and HPAE cell lines 
(Figure 2B). Moreover, apoptosis of LPS-treated BEAS-2B 
and HPAEC was promoted by overexpression of CXCL3, 
while the process was inhibited by knockdown of CXCL3 
(Figures 2C and 2D), demonstrating the antiapoptotic 
effect of CXCL3 silence against LPS-treated BEAS-2B and 
HPAEC cells.

Knockdown of CXCL3 inhibited the inflammation 
of LPS-treated BEAS-2B and HPAE cell lines

LPS induced the upregulation of TNF-α, IL-1β, and IL-18 in 
BEAS-2B and HPAE cells (Figures 3A and 3B). Overexpression 
of CXCL3 upregulated the levels of TNF-α, IL-1β, and IL-18, 
while knockdown of CXCL3 downregulated the levels of 
these cytokines in LPS-treated BEAS-2B and HPAE cells 
(Figures 3A and 3B), exerting the anti-inflammatory effect 
of CXCL3 silence against LPS-treated BEAS-2B and HPAE 
cells.

Knockdown of CXCL3-inhibited MAPKs signaling in 
LPS-treated BEAS-2B and HPAE cell lines

The protein expressions of p-ERK1/2, p-p38, and p-JNK in 
BEAS-2B and HPAE cells were increased by LPS (Figure 4). 
Overexpression of CXCL3 promoted the activation, while 
knockdown of CXCL3 suppressed the activation of MAPKs 
signaling in LPS-treated BEAS-2B and HPAE cells through 
upregulation and downregulation of p-ERK1/2, p-p38, and 
p-JNK, respectively (Figure 4).

incubated with horseradish peroxidase–conjugated secondary 
antibody (1:5000). Immunoreactivities were visualized using 
enhanced chemiluminescence (Sigma-Aldrich). All the anti-
bodies were acquired from Abcam (Cambridge, MA, USA).

Statistical analysis

All data with at least triple replicates were expressed as 
mean ± SEM and analyzed by Student’s t-test or one-way 
analysis of variance under SPSS software. P < 0.05 was con-
sidered as statistically significant.

Results

LPS caused the upregulation of CXCL3 in LPS-treated 
BEAS-2B and HPAE cells to induce cytotoxicity. The viabil-
ity of BEAS-2B and HPAE cells were reduced by LPS in a 
dose-dependent manner (Figure 1A). Protein expression of 
CXCL3 in BEAS-2B and HPAE cells was enhanced by LPS in 
a dose-dependent manner (Figure 1B), which suggested the 
potential functional role of CXCL3 in LPS-treated BEAS-2B 
and HPAE cells.

Knockdown of CXCL3 inhibited the apoptosis of 
LPS-treated BEAS-2B and HPAEC

LPS-treated BEAS-2B and HPAE cell lines were then sub-
jected to gain- and loss- of functional assays through trans-
fection with pcDNAs and siRNAs, respectively. Transfection 
with pc-CXCL3 or siCXCL3 increased or decreased the 
protein expression of CXCL3 in BEAS-2B and HPAE cells, 

Figure 1  Lipopolysaccharides caused the upregulation of CXCL3 in BEAS-2B and HPAE cells. (A) The viabilities of BEAS-2B and 
HPAE cells were reduced by lipopolysaccharides in a dose-dependent manner. (B) The protein expression of CXCL3 in BEAS-2B and 
HPAE cells was enhanced by lipopolysaccharides in a dose-dependent manner. *, **, ***, P < 0.05, P < 0.01, P < 0.001. BEAS-2B, 
human lung epithelial cells; CXCL3, C-X-C motif chemokine ligand 3; HPAEC, human pulmonary artery endothelial cells.

(A) (B)
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HPAE cells. Moreover, knockdown of CXCL3 reduced apop-
tosis and inflammation in LPS-treated BEAS-2B and HPAE 
cell lines, thus ameliorating sepsis-associated acute lung 
injury.

LPS caused the reduction of viability in BEAS-2B, pro-
moted the release of lactate dehydrogenase and induced 
excessive accumulation of inflammatory factors, such as 
TNF-α, IL-6, and TGF-β, thus contributing to the develop-
ment of acute lung injury.22 LPS also induced inflammatory 
responses, endothelial injury, and accumulation of reac-
tive oxygen species in HPAEC.23 Therefore, LPS-treated 
BEAS-2B and HPAE cell lines are widely used as cell mod-
els for sepsis-associated acute lung injury. In this study, 
BEAS-2B and HPAE cells were treated with LPS, which 

Discussion

Inflammatory characteristics of LPS-induced acute lung 
injury in mice showed that CXCLs were primarily accumu-
lated in lung tissues.19 LPS induced upregulation of CXCL4 
and contributed to apoptosis and permeability of endo-
thelial cells.20 Suppression of CXCL16/CXCR6 axis reduced 
LPS-induced acute lung injury.21 Bioinformatic analysis has 
shown that CXCL3 was a differentially expressed gene in 
mechanical ventilation and LPS-induced mice with acute 
lung injury, and might be regarded as a potential target 
for the treatment of acute lung injury.18 This is the first 
evidence demonstrating the contribution of CXCL3 to LPS-
induced cytotoxicity and inflammation in BEAS-2B and 

(A)

(B)

(B) (D)

Figure 2  Knockdown of CXCL3 inhibited the apoptosis of LPS-treated BEAS-2B and HPAE cell lines. (A) Transfection with pc-CXCL3 
or siCXCL3 increased or decreased the protein expression of CXCL3 in BEAS-2B and HPAE cells, respectively. (B) Overexpression of 
CXCL3 reduced the viabilities of LPS-treated BEAS-2B and HPAE cell lines, while knockdown of CXCL3 caused the opposite results. 
(C) Overexpression of CXCL3 promoted the apoptosis of LPS-treated BEAS-2B and HPAE cell lines, while knockdown of CXCL3 
caused the opposite results. (D) Relative apoptosis of LPS-treated BEAS-2B and HPAE cell lines after transfection of pc-CXCL3 or 
siCXCL3, respectively. *, **, ***, P < 0.05, P < 0.01, P < 0.001. BEAS-2B, human lung epithelial cells; CXCL3, C-X-C motif chemokine 
ligand 3; HPAEC, human pulmonary artery endothelial cells; LPS, lipopolysaccharides.



14	 Wang Y and Pan L

Figure 3  Knockdown of CXCL3 inhibited the inflammation of LPS-treated BEAS-2B and HPAE cell lines. (A) Overexpression of 
CXCL3 upregulated the mRNA expressions of TNF-α, IL-1β, and IL-18, while knockdown of CXCL3 downregulated the levels of TNF-
α, IL-1β, and IL-18 in LPS-treated BEAS-2B and HPAE cells. (B) Overexpression of CXCL3 upregulated the protein expressions of 
TNF-α, IL-1β, and IL-18, while knockdown of CXCL3 down-regulated the levels of TNF-α, IL-1β, and IL-18 in LPS-treated BEAS-2B and 
HPAE cells. *, **, ***, P < 0.05, P < 0.01, P < 0.001. BEAS-2B, human lung epithelial cells; CXCL3, C-X-C motif chemokine ligand 3; 
HPAEC, human pulmonary artery endothelial cells; LPS, lipopolysaccharides.

(A) (B)

Figure 4  Knockdown of CXCL3 inhibited MAPKs signaling in LPS-treated BEAS-2B and HPAEC. Overexpression promoted the 
upregulation of p-ERK1/2, p-p38, and p-JNK, while knockdown of CXCL3 reduced the levels of p-ERK1/2, p-p38, and p-JNK in LPS-
treated BEAS-2B and HPAE cells. *, **, ***, P < 0.05, P < 0.01, P < 0.001. BEAS-2B, human lung epithelial cells; CXCL3, C-X-C motif 
chemokine ligand 3; HPAEC, human pulmonary artery endothelial cells; LPS, lipopolysaccharides; MAPKs, mitogen-activated pro-
tein kinases.
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induced cytotoxicity in the cells by cell viability reduc-
tion, increase in cell apoptosis, and upregulation of TNF-
α, IL-1β, and IL-18.

A previous study has shown that CXCL3 was upreg-
ulated in lung tissues of mechanical ventilation and LPS-
induced mice.18 Here, LPS also induced upregulation of 
CXCL3 in BEAS-2B and HPAE cells. Functional assays showed 
that knockdown of CXCL3 decreased viability, increased 
apoptosis, and upregulated TNF-α, IL-1β, and IL-18 in LPS-
treated BEAS-2B and HPAE cells. Therefore, knockdown of 
CXCL3 might exert antiapoptotic and anti-inflammatory 
effects against sepsis-associated acute lung injury, which 
needs further investigation.

MAPKs signaling has been shown to be essential for dys-
regulated and overly aggressive inflammatory response in 
the development of sepsis.24 MAPKs were abnormally acti-
vated in rats with sepsis-associated acute lung injury,25 and 
inhibition in the phosphorylation of p38 and JNK in lung 
tissues alleviated sepsis-associated acute lung injury.24 
Activation of CXCLs/CXCR2 axis promoted the activation of 
p38/ERK signaling to regulate cell survival and migration in 
inflammatory diseases.16 Moreover, CXCL3 activated MAPK/
ERK pathway to promote tumorigenesis of uterine cervical 
cancer,26 and inhibitions of ERK and JNK suppressed CXCL3-
induced adipogenic differentiation.27 This study indicated 
that overexpression of CXCL3 enhanced the phosphoryla-
tion, while knockdown of CXCL3 reduced the phosphory-
lation of ERK1/2, p38, and JNK in BEAS-2B and HPAE cells.

In summary, CXCL3 promoted apoptosis and inflam-
mation, and caused upregulations of p-ERK1/2, p-p38, 
and p-JNK, while knockdown of CXCL3 showed opposite 
results in LPS-treated BEAS-2B and HPAE cells. CXCL3 might 
be considered as a potential target for the treatment of 
sepsis-associated acute lung injury. However, the effect 
of CXCL3 on animal models of sepsis-associated acute lung 
injury should be investigated in further research.
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