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Abstract
Background and objective: Osteoarthritis is the most common chronic osteoarthrosis disease. 
There are complex factors that lead to osteoarthritis. Therefore, it is essential to investigate 
the molecular mechanism of osteoarthritis, especially the mechanism of articular cartilage 
degeneration. In this study, the mechanism of FPR1 (formyl peptide receptor 1) in LPS (lipo-
polysaccharide) induced chondrogenic cell ATDC5 was investigated.
Materials and methods: We employed real-time quantitative polymerase chain reaction 
(RT-qPCR) and western blot assay to analyze the expression level of FPR1 in ATDC5 cell lines 
induced by LPS at 0, 2.5, 5, and 10 μg/mL concentrations. Then we constructed the FPR1 
knockdown plasmid to transfect the LPS-ATDC5. MTT assay was used to test cell viability in 
control, LPS, LPS+shNC and LPS+shFPR1 groups. ELISA and RT-qPCR assay were employed to 
examine the TNF-α (tumor necrosis factor-α)、IL-6 and IL-1β expression level. Flow cytometry 
and western blot assay were employed to analyze the apoptosis of LPS-ATDC5. Finally, we 
utilized the western blot assay to text related protein expression level of MAPK (mitogen-acti-
vated protein kinase) signaling pathway.
Results: In this study, we found the expression level of FPR1 was increased in LPS-ATDC5, 
downregulation of FPR1 improves the survival rate and alleviates inflammatory response of 
LPS-ATDC5. Meanwhile, downregulation of FPR1 alleviates apoptosis of LPS-ATDC5. Finally, 
downregulation of FPR1 inhibits the MAPK signal pathway.
Conclusion: Present study revealed that FPR1 was highly expressed in LPS-induced chondro-
cytes ATDC5, and the downregulation of FPR1 abated the inflammatory response and apopto-
sis of LPS-ATDC5 cells by regulating the MAPK signaling pathway.
© 2021 Codon Publications. Published by Codon Publications.
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(Biological Industries, Kibbutz Beit Haemek, Israel) sup-
plemented with 10% fetal bovine serum (FBS; Biological 
Industries), 1% penicillin/streptomycin (Gibco, Grand Island, 
USA), and 0.025-µg/mL amphotericin B (Sigma-Aldrich, St. 
Louis, MO, USA). The cells were treated with increasing 
doses of LPS (0-, 2.5-, 5-, and 10-μg/mL concentrations) at 
37°C for 12 h. The cells were cultured in a humidified 5% 
CO2 incubator at 37°C.

RNA extraction and real-time quantitative 
polymerase chain reaction (RT-qPCR)

Total RNA was extracted from collected cells by adding 
trizol reagent (Invitrogen, CA, USA) according to the prod-
uct manual. The purity and concentration of the extracted 
total RNA was examined by Nano Drop 1000 spectropho-
tometer (Thermo Fisher Scientific, Grand Island, USA). 
The Cham QTM SYBR® qPCR Master Mix (Vazyme, Nanjing, 
China) was applied to amplify the FPR1, tumor necrosis fac-
tor-α (TNF-α), Interleukin 6 (IL-6), and IL-1β complementary 
DNAs (cDNAs) using the QuantStudio 6 Flex RT-PCR system 
(Life Technologies, Carlsbad, CA) according to the product 
manual. The expression values of target gene were nor-
malized to U6 expression. The PCR primers were designed 
and chemically synthesized by Tsingke Technology (Beijing, 
China). Relative expressions of FPR1, TNF-α, IL-6, and IL-1β 
in each experimental group were analyzed using the 2△△Ct 
method.16,17 Primer sequences are exhibited in Table 1. All 
reactions were executed in triplicate.

Cell transfection

The FPR1 stable knockdown cell lines were constructed 
by lentivirus, which contained pFU-GW-009 vector (Gene 
Chem, China). All lentiviral vectors expressed enhanced 
green fluorescent protein (GFP), which was used for mea-
suring their infection efficiency. The 293T cells were used 
to package the lentivirus. We found that the infection 
efficiency of ATDC5 cell lines was highest if the multiplic-
ity of infection (MOI) was 200. The medium containing 

Introduction

Osteoarthritis (OA) is the most common chronic osteoar-
throsis disease, and globally it is one of the major causes 
of pain and disability in older adults.1 As a degenerative 
disease, the degeneration of the articular cartilage is the 
main cause of osteoarthritis.2 There are many factors that 
contribute to cartilage degeneration, including aging, obe-
sity, strain, trauma, and inflammatory diseases.3,4 Because 
of the complex factors that lead to osteoarthritis, it is 
essential to investigate the molecular mechanism of articu-
lar cartilage degeneration.

Articular cartilage plays an important role in arthrocen-
tesis. Chondrocytes are unique cells in articular cartilage 
which are responsible for maintaining a balance between 
degradation and synthesis of extracellular matrix (ECM).5 
Pro-inflammatory cytokines such as Interleukin-1 (IL-1) fam-
ily, matrix metalloproteinases (MMP), and cyclooxygenase 2 
(COX-2) contribute to the loss of major components of ECM 
during the degeneration of OA articular cartilage.6 In addi-
tion, apoptosis is also the direct cause of chondrocyte 
death.7 Therefore, it is necessary to explore the molecu-
lar mechanism of inflammatory response and apoptosis of 
chondrogenic cells.

Formyl peptide receptor 1 (FPR1), a member of the 
G-protein-coupled pattern-recognition receptor family, is 
mainly expressed by mammalian phagocytic leukocytes and 
is one of the major proteins that cause inflammation and tis-
sue damage.8,9 FPR1 is associated with the development of 
many diseases. It has been reported that FPR1 gene silencing 
can inhibit the apoptosis of myocardial cells and cardiovas-
cular remodeling in a rat model of ischemia reperfusion by 
inhibiting the MAPK signaling pathway, thereby alleviating 
myocardial injury.10 Wang et al. found that exogenous carbon 
monoxide could interfere with the activity of FPR1 by inhib-
iting p38 MAPK, so as to reduce the inflammatory response 
of progressive multiple sclerosis (PMS)-related neutrophils 
induced by LPS.11 FPR1 is highly expressed in neuroblastoma 
and promotes its occurrence by activating the MAPK/Erk, 
PI3K/Akt, and P38-MAPK pathways.12 In the case of degener-
ative disc herniation, FPR1 activity was inhibited by a novel 
FPR1 antagonist, which attenuated pro-inflammatory factor 
expression and alleviated neuralgia response in a mouse 
model.13 In osteoarthritis, FPR1 expression was found to be 
upregulated compared with normal tissue, and it is one of 
the 10 hub genes that causes arthritis.14 In addition, by tar-
geting FPR1 with CFLFLF-PEG-64cu peptide to detect inflam-
matory responses associated with the onset of osteoarthritis, 
FPR1 could be used as a target for the diagnosis and treat-
ment of osteoarthritis.15 However, the role of FPR1 in OA 
cartilage degeneration of has not been reported, and the 
specific molecular mechanism of FPR1 is unclear. The objec-
tive of this study was to investigate the mechanism of FPR1 in 
lipopolysaccharide (LPS)-induced chondrogenesis cell ATDC5.

Materials and Methods

Cell culture

The chondrogenic cell line ATDC5 was resuspended 
in Dulbecco’s Modified Eagle Medium (DMEM) culture 

Table 1  Primers for FPR1, TNF-α, IL-6, IL-1β, and reference 
genes.

Gene Primer Sequence (5́ →3 )́

FPR1 Forward CATGGGAGGACATTGGCCTT

Reverse CACGGATTCTGACTGTGGCT

TNF-α Forward ATGAGCACAGAA AGCATGATC

Reverse TACAGGCTTGTCACTCGAATT

IL-6 Forward TTCCCTACTTCACAAGTC

Reverse ACTAGGTTTGCCGAGTAG

IL-1β Forward ACAGATGAAGTGCTCCTTCCA

Reverse GTCGGAGATTCGTAGCTGGAT

β-actin Forward GTGACGTTGACATCCGTAAAGA

Reverse GCCGGACTCATCGTACTCC
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antibody, 44-684G, 1:1000; Invitrogen), p38 (rabbit anti-p38 
antibody, ab170099, 1:3,000; Abcam), p-JNK (rabbit anti-p-
JNK antibody, ab76572, 1:5000; Abcam), JNK (rabbit anti-
JNK antibody, ab199380, 1:2500; Abcam), β-actin (rabbit 
anti-β-actin antibody, ab8227, 1:3000; Abcam). The mem-
branes were further incubated with horseradish peroxidase 
(HRP)-conjugated goat anti-rabbit immunoglobulin G (IgG) 
secondary antibody (ab205718, 1:1500; Abcam) and the 
bands on the membranes were visualized by the ECL che-
miluminescence reagent (Beyotime). The β-actin was used 
to normalize the amount of analyzed samples, and pro-
tein bands were quantified by gray scale analysis through 
ImageJ software (National Institutes of Health).

Statistical analysis

All data are presented as mean ± standard deviation 
obtained from three independent assays. Student’s t-test 
was employed to calculate comparisons between two 
groups. GraphPad Prism 5 (GraphPad Software Inc., San 
Diego, CA, USA) was employed for analysis. P < 0.05 indi-
cates statistically significant differences.

Results

Expression of FPR1 was increased in LPS-ATDC5

The FPR1 expression level was examined in chondrogenic 
cell line ATDC5, which was stimulated with 0-, 2.5-, 5-, 
and 10-μg/mL LPS concentrations for 12 h. RT-qPCR result 
showed that the FPR1 mRNA expression level increased in 
an LPS dose-dependent manner (Figure 1A). Western blot 
assay result revealed that LPS treatment upregulated the 
protein expression level of FPR1 in a dose-dependent man-
ner, which was consistent with RT-qPCR results (Figure 1B). 
These two results suggested that the expression of FPR1 
was upregulated in LPS-ATDC5.

Downregulation of FPR1 improved the survival 
rate of LPS-ATDC5

The role of FPR1 in ATDC5 cell lines induced by 5-μg/mL 
LPS concentration was explored. It was observed while 
making a toxicity curve of LPS (see Supplementary 
Material, Figure S1) that the optimal concentration of 5-μg/
mL LPS was required, and FPR1 was highly expressed after 
induction by 5-μg/mL LPS in our results as shown above. 
The results of Western blot (Figure 2A) and RT-qPCR (Figure 
2B) assays displayed that LPS treatment notably increased 
the protein and mRNA expression level of FPR1 compared 
to control group in ATDC5 cells, and the FPR1 protein and 
mRNA expression level were downregulated in LPS+shFPR1 
group compare to LPS+shNC group. Then MTT assay was 
employed to analyze cell viability in ATDC5 cells of con-
trol, LPS, LPS+shNC, and LPS+shFPR1 groups. The result 
demonstrated that viability of ATDC5 cells was enhanced 
in LPS+shFPR1 group compared to LPS+shNC group 
(Figure 2C). These results revealed that downregulation of 
FPR1 improved the survival rate of LPS-ATDC5. 

0.3-mg/mL puromycin (Thermo Fisher Scientific) was used 
to select stably transfected cells. Finally, the infected cells 
were divided into two groups: (i) Infection of control virus 
(shNC); and (ii) infection of FPR1 knockdown virus (shFPR1).

MTT assay

MTT assay was employed to assess the extent of cell via-
bility. Briefly, the cells (2.5 × 103 cells/well) were plated 
into 96-well plates in triplicate and treated with differ-
ent conditions as indicated in each experiment. Following 
treatment, a final concentration of 0.5-mg/mL MTT solu-
tion (Beyotime, Shanghai, China) was added into each 
well, and the cells were incubated for another 4 h at 37°C. 
Subsequently, the culture medium was discarded and 100-
μL dimethyl sulfoxide (DMSO; Sigma-Aldrich) was added 
for visualization. Optical density (OD) of each sample was 
detected at 490 nm through a microplate reader (BioTek, 
Winooski, VT, USA).

Enzyme-linked immunosorbent assay (ELISA)

TNF-α, IL-6, and IL-1β protein levels in LPS-ATDC5 cell 
lines were examined by ELISA using kits from eBiosci-
ence (Cat. No. 88–7013-88; San Diego, CA, USA) following 
manufacturer’s instructions.

Apoptosis assay

Annexin V-PE-Cy5 Apoptosis Staining/detection kit (ab14159; 
Abcam, Cambridge, MA, USA) was applied to analyze cell 
apoptosis. Flow cytometry results were obtained from BD 
Accuri™ C6 (CA, USA). Briefly, the cells were digested, washed, 
and resuspended in binding buffer and cultured in dark in 
Annexin V-PE-Cy5‐FITC. Again, the cells were kept in dark for 
at least 30 min at 37°C and quantified through flow cytometry.

Western blot

Briefly, cells were washed thrice in pre-cooled phosphate 
buffer solution (PBS), and the total protein was extracted by 
radioimmunoprecipitation assay (RIPA) buffer (Beyotime). 
Protein concentration was measured by using bicinchoninic 
acid (BCA) protein assay kits (CoWin Biotechnology, 
Jiangsu, China). Equal amounts of total proteins were sep-
arated using sodium dodecyl sulphate–polyacrylamide gel 
electrophoresis (SDS-PAGE). They were then transferred to 
the polyvinylidene difluoride membranes (PVDF; Millipore) 
and blocked by 5% non-fat milk at room temperature for 1 
h. The protein was identified through overnight incubation 
at 4°C with the following specific primary antibodies: FPR1 
(rabbit anti-FPR1 antibody, PA1-41398, 1:2000; Invitrogen), 
Bax (rabbit anti-Bax antibody, ab32053, 1:5000; Abcam), 
Bcl-2 (rabbit anti-Bcl-2 antibody, ab182858, 1:2000; Abcam), 
cleaved Caspase-3 (rabbit anti-cleaved Caspase-3 antibody, 
ab32042, 1:500; Abcam), p-ERK (rabbit anti-p-ERK anti-
body, ab201015, 1:1000; Abcam), ERK (rabbit anti-ERK anti-
body, ab32537, 1:1000; Abcam), p-p38 (rabbit anti-p-p38 
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Figure 1  The expression of FPR1 was increased in LPS-ATDC5. (A) The mRNA expression level of FPR1 at 0-, 2.5-, 5-, 10-μg/mL 
LPS concentrations; **P < 0.01. (B) The protein expression level of FPR1 at 0-, 2.5-, 5-, 10-μg/mL LPS concentrations; **P < 0.01. 
β-actin was used as an internal control.
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Figure 2  Downregulation of FPR1 improved the survival rate of LPS-ATDC5. (A) The protein expression level of FPR1 in ATDC5 cell 
of control, LPS, LPS+shNC, and LPS+shFPR1 groups; **P < 0.01. β-actin was used as an internal control. (B) The mRNA expression 
level of FPR1 in ATDC5 cells of control, LPS, LPS+shNC, and LPS+shFPR1 groups; **P < 0.01. (C) MTT analysis of ATDC5 cell viability 
in control, LPS, LPS+shNC, and LPS+shFPR1 groups; *P < 0.05, **P < 0.01. #shNC versus shFPR1.
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Figure S1 Toxicity of LPS on ADTC5 cells. CCK8 assay showed 
the cell viability of ADTC5 cells treated with LPS at 0-, 2.5-, 5-, 
and 10-μg/mL concentrations. *P < 0.05, **P < 0.01.

Downregulation of FPR1 reduced inflammatory 
response of LPS-ATDC5

In order to explore whether FPR1 mediates LPS-ATDC5 
inflammatory response, the expression levels of TNF-α, 
IL-6, and IL-1β were examined in LPS-ATDC5. We found that 

the concentration and mRNA expression levels of TNF-α, 
IL-6, and IL-1β increased notably in the LPS group compared 
to the control group. The ELISA and RT-qPCR results showed 
that both concentration of inflammatory factors and levels 
of genes were upregulated by the induction of LPS. The 
results of ELISA presented that FPR1 knockdown decreased 
the concentration of TNF-α, IL-6, and IL-1β (Figure 3A). 
Results of RT-qPCR assay revealed that the expression lev-
els of TNF-α, IL-6, and IL-1β were markedly decreased in 
LPS-ATDC5 after knocking down of FPR1 (Figure 3B). Hence, 
LPS-ATDC5 inflammatory response was reduced with down-
regulation of FPR1.

Downregulation of FPR1 decreased apoptosis  
of LPS-ATDC5

The apoptosis rate of LPS-ATDC5 cells was analyzed. The 
flow cytometry assay results revealed that the apoptosis 
rate increased prominently in the LPS group compared 
to the control group. Knockdown of FPR1 decreased the 
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Figure 3  Downregulation of FPR1 reduced inflammatory response of LPS-ATDC5. ELISA was used to measure the concentrations 
of TNF-α, IL-6, and IL-1β in LPS-ATDC5 of control, LPS, LPS+shNC, and LPS+shFPR1 groups; *P < 0.05, **P < 0.01. The (A) protein and 
(B) mRNA expression levels of TNF-α, IL-6, and IL-1β in LPS-ATDC5 of control, LPS, LPS+shNC, and LPS+shFPR1 groups. **P < 0.01. 
#shNC versus shFPR1.
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Figure 4  Downregulation of FPR1 reduced apoptosis of LPS-ATDC5. (A) The flow cytometry assay analysis of apoptosis rate.  
(B) Western blot analysis of Bax, cleaved Caspase-3, and Bcl-2 in Ishikawa and HEC-1-B cells after treatment of GA at 0-, 20-, 50-, 
100 μM concentrations. **P < 0.01. GAPDH was used as an internal control. #shNC versus shFPR1.

apoptosis rates of LPS-ATDC5 cell lines compared to the 
control group (Figure 4A). Further, Western blot assay 
was employed to examine the expression levels of apop-
tosis-related proteins. The results showed that after 
knocking down FPR1, the expression levels of Bax and 
cleaved Caspase-3 were decreased whereas the expression 
level of Bcl-2 was upregulated in LPS-ATDC5 (Figure 4B). 
Collectively, these results illustrated that FPR1 knockdown 
decreased LPS-ATDC-5 apoptosis.

Downregulation of FPR1 inhibited the MAPK 
signaling pathway 

Finally, the expression levels of related proteins of MAPK 
signaling pathway were examined by Western blot assay. 

The result depicted that the activity of MAPK signaling 
pathway was remarkably enhanced in the LPS group com-
pared to the control group. The expression levels of ERK, 
p38, and JNK all phosphorylated, were downregulated in 
FPR1 stable knockdown LPS-ATDC5 cells compared to the 
control group, while the expression levels of ERK, p38, and 
JNK did not change. Collectively, these results revealed 
that downregulation of FPR1 suppressed the MAPK signaling 
pathway (Figure 5).

Discussion

Osteoarthritis is the most common chronic disease of joints, 
affecting majority of population over the age of 65 years. It 
is a leading musculoskeletal cause of impaired mobility in 
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apoptosis through activating MAPK signaling pathway in 
murine chondrogenic ATDC5 cell lines. In future, it will be 
investigated whether FPR1 plays a role in osteoarthritis by 
influencing other signaling pathways.

Conclusion

It was discovered in the present study that the expression 
of FPR1 was increased in LPS-ATDC5. On the other hand, 
downregulation of FPR1 improved the survival rate of LPS-
ATDC5, decreased the inflammatory response and apopto-
sis of LPS-ATDC5, and, finally, inhibited the MAPK signaling 
pathway. These findings suggested that downregulation of 
FPR1 abated LPS-induced inflammatory injury and apopto-
sis by upregulating the activity of MAPK signaling pathway 
in murine chondrogenic ATDC5 cells. However, as this study 
was restricted to explore the functioning of FPR1 in MAPK 
signaling pathway, the future research would investigate 
whether it works on other signal pathway as well.
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the elderly.18 Previous studies have proved that local inflam-
matory response leads to the pathogenesis of osteoarthritis. 
For example, tripterine upregulates miR-223 to relieve 
LPS-induced injury in osteoarthritis;19 tan IIA protected 
ATDC5 cells from LPS-induced injury by reducing miR-203a 
expression level and inhibiting JAK/STAT and JNK path-
ways;20 piperine relieves LPS-induced inflammatory injury 
by decreasing the expression level of miR-127 in osteoarthri-
tis;21 and pretreatment with green tea polyphenols (GTP) 
reduces LPS-induced inflammatory response in osteoar-
thritis by inhibiting the MAPK and NF-κB pathways through 
regulating miR-9 positively.22 Therefore, exploring effective 
molecules that could reduce the inflammatory response of 
osteoarthritis is necessary. Our study for the first time vali-
dated that FPR1 promotes the injury of osteoarthritis, sug-
gesting that FPR1 could be involved in its pathogenesis.

FPR1 has been found to play multiple roles in many 
animal diseases. These roles are ambivalent, and could be 
beneficial or harmful.23 FPR1 has a function in the tumorige-
nicity of human cervical cancer.9 Suppressing FPR1 could be 
a potential intervention strategy to manage triple-negative 
breast cancer (TNBC) displaying the characteristics of breast 
cancer.24 Blocking FPR1 suppresses activation of neutrophil 
and protects against acute lung injury by targeting dipeptide 
HCH6-1.25 It is found in this study that the expression level of 
FPR1 was increased in LPS-ATDC5, and the downregulation 
of FPR1 improved the survival rate, and reduced inflamma-
tory response and apoptosis of LPS-ATDC5. Thus, FPR1 might 
serve as clinical therapeutic targets in many diseases.

FPR1 regulates multiple signaling pathways. FPR1 can 
decrease NF-κB nuclear translocation, and can regulate 
NLRP3 inflammasome signaling and MAPK signaling path-
ways.26 FPR1-knocked out mice displayed decreased acute 
inflammation (MAPK and NF-κB signaling pathway acti-
vation and NRLP3 inflammasome pathway induction).27 

Specific members of gut microbiota stimulate FPR1 on 
intestinal epithelial cells to produce reactive oxygen spe-
cies, causing extracellular signal-regulated kinase MAPK, 
and rapid phosphorylation of focal adhesion kinase (FAK).28 
Consistent with the studies that established FPR1 interact 
with multiple signal pathways, the present study revealed 
that FPR1 promotes LPS-induced inflammatory injury and 

0R
el

at
iv

e 
p-

JN
K

/J
N

K
pr

ot
ei

n 
le

ve
l

R
el

at
iv

e 
p-

E
R

K
/E

R
K

pr
ot

ei
n 

le
ve

l
R

el
at

iv
e 

p-
p3

8/
p3

8
pr

ot
ei

n 
le

ve
l

2

3

4

5

0.0

0.5

1.0

1.5

2.0

2.5

p-ERK

ERK

p-JNK

JNK

β-actin

p-p38

p38

1.0

1.5

0.0

0.5

Control LPS LPS
+shNC

LPS
+shFPR1

Control LPS LPS
+shNC

LPS
+shFPR1

Control LPS LPS
+shNC

LPS
+shFPR1

Control LPS
LPS

+shNC
LPS

+shFPR1
** **

**

##

##

Figure 5  Downregulation of FPR1 inhibited the MAPK signaling pathway. Western blot analysis of phosphorylated ERK, ERK, 
phosphorylated p38, p38, phosphorylated JNK, and JNK in ATDC5 cell lines of control, LPS, LPS+shNC, and LPS+shFPR1 groups. 
*P < 0.05, **P < 0.01. β-actin was used as an internal control. #shNC versus shFPR1.
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